


M2 Introduction

Introduction

This report summarizes all the knowledge I had the chance to learn during my internship in Lille, with Ciprian
Tudor, during the spring 2022. C. Tudor is known for its breakthroughs about Malliavin calculus combined with
Stein’s method. Before introducing the subject, I would like to thank him, and his PhD students Charles-Phillipe
Diez and Julie Gamain for their mathematical, and human interactions I had with them.

This report contains two parts. The first one introduce the notion of Malliavin derivative, used by the French
mathematician Paul Malliavin (1925 - 2010). He used it for studying the regularities of the law of stochastic
(partial) differential equations, and applications for mathematical finance. The second part is about Stein’s method,
introduced by Charles Stein (1920 - 2016) in 1972. The main goal of this method is to give smooth conditions to
prove a central limit theorem.

The main idea of this report is to know how to mix those two notions to have conditions to have central limit
theorems, better than simply using Stein’s method. This idea came from Nourdin and Peccati, and this report is
very inspired by their book, Normal approximations with Malliavin calculus, published in 2012. Our aim is the very
last theorem of this report, Breuer-Major theorem.

The logic of this report is the following one. The Malliavin calculus, which is very inspired by the notion
of Gateaux derivative on general Hilbert space, is about differentiating some random variables with respect to the
chance ω. The difficulty is to differentiate on general probability space (Ω, F ,P), since we do not have any topological
structure on it. Here comes the Gateaux derivative. A map on two real Hilbert spaces is Gateaux differentiable in
a point of the Hilbert space if it is in the real differential calculus sense, in every direction. To deal with Hilbert
space with our case of random variables, we introduce the notion of isonormal Gaussian process, which send every
element of a set real separable Hilbert space into the set of centered Gaussian random variables. Inspired by the
Gateaux derivative, we can define the notion of derivative with the help of those process. We generalize it by taking
the closure of a family of polynomials taken in the isonormal process, which yields to the notion of Wiener chaos
(named after Norbert Wiener, 1896-1964).

We begin the first part by an example in the case where (Ω, F ,P) is the space (R, B(R), γ), where γ is the
standard Gaussian measure on R. We will refer it as "the one dimensional case". We will see with it why the
polynomial family we will use is the Hermite polynomials. Then, we will define in general case what is the derivative
in a Malliavin sense. We will introduce its adjoint, the divergence operator (in the sense of the operator theory), and
we will show that this operator extends the notion of Itô’s stochastic integral. Those notions will be linked by the
notion of Ornstein-Ulhenbeck semi group, which appears naturally when we want to study the law of the solution
of some stochastic differential equations. The interpretation of the notions using this semi group is a good key for
solving some computations, as we will see in the last section of this part by some applications. This semi-group
allows us to prove the Nelson’s hypercontractibity, stating that the Lp convergence in a set Wiener chaos are all
equivalent. This part is greatly inspired by Ivan Nourdin and Giovanni Peccati and David Nualart, The Malliavin
calculus and its related topics, 1995.

The second part presents the Stein’s method. The idea is the following : we have a characterization with test
functions of the standard Gaussian law, that looks like the distribution theory and the variational representation
of some partial differential equations. Here, we want to have a quantitative information about how far a law is with
respect to a Gaussian measure. To do this, we introduce different distances on probability measure that respect the
law convergence. The Stein’s method consists of solving the Stein’s equation, and using it to have some bounds (we
refer it as Stein’s bound) on distances between a Gaussian law and a random variable. We will begin, like in part I,
by treating the so-called one dimensional case, when the random variables are real. We will (quickly) generalize it
in the multi dimensional case, when we deal with random vectors. We will mix it with some notions of Malliavin
calculus to prove one important and surprising theorem : the fourth moment theorem, stating that for a sequence
in a set Wiener chaos, the convergence in law of this sequence to a Gaussian measure is equivalent with convergence
of the expectation of the square and the fourth power of this sequence to the expectation of the Gaussian. This
theorem has a great consequence. The convergence in law of a vector of entries belonging to set Wiener chaos to a
Gaussian law is equivalent to the component by component one to a Gaussian law.

The second part concludes with an application of those two parts and can be seen as a synthesis of this report,
the Breuer-Major theorem. This one states that a function of centered stationary Gaussian process, integrable with
respect to the standard Gaussian measure, satisfies a central limit theorem if the covariance function at a certain
power (depending on the function) is summable.
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I One dimensional case
We consider the density measure γ on (R,B(R)) defined by

dγ(x) déf.= 1√
2π
e

−x2
2 dx.
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I.1 Derivative operator

Definition I.1
We call smooth functions all function f : R −→ R which are C∞ such that :

∀p ∈ N,∃n ∈ N,∃C ⩾ 0,∀x ∈ R,
∣∣∣f (p)(x)

∣∣∣ ⩽ C|x|n

We note S the set of all smooth functions.

We will generalize this in next section with smooth functionals. To justify the relevance of those smooth functions,
let introduce the following lemma :

Lemma I.1
Let M be a subspace of Lq(X,A, µ), where µ is a σ-finite measure, and (X,A) is a measurable space, for
q ∈ [1,+∞[. Let q′ ∈]1,+∞], such that 1

q′ + 1
q = 1. Then, M is dense in Lq(µ) if and only if for all g ∈ Lq′(µ) :

[
∀f ∈ M,

ˆ

X

f(x)g(x) dµ(x) = 0
]

=⇒ µ(g ̸= 0) = 0

Proof of the lemma : • Before beginning, we suppose known
the two following facts, the second one coming from Hahn-Banach
theorem :

i. Riesz duality theorem. The map

J :

(
Lq

′ (µ) −→ (Lq(µ))′

g 7−→
(
Lq(µ) −→ R
f 7−→

´

X f(x)g(x) dµ(x)

)
)

is an isometry for the norm associated with Lq and (Lq)′.
ii. If M is linear subspace of Lq(µ) and f0 ∈ M , then f0 ∈ M̄

if and only if there is no T ∈ (Lq(µ))′ such that T|M = 0 and
T (f0) ̸= 0.

[⇐=] Suppose that we have this implication. Let f0 ∈ Lq(µ), and
make the assumption that there exists T ∈ Lq(µ)′ such that T|M = 0
and Tf0 ̸= 0. Then, by the isometry J , there exists g ∈ Lq′ (µ) such
that

∀f ∈ Lq(µ), T f =
ˆ

X
fg dµ

By hypothesis, T|M = 0. By the implication, it follows that g = 0
µ-almost everywhere, and so that T is the null form, which contradicts
the fact that Tf0 ̸= 0. Hence, there is no such T , and by ii., it follows
that f0 ∈ M̄ , and so that M̄ = Lq(µ).

[=⇒] Suppose that M is dense in Lq(µ). Let g ∈ Lq
′ (µ) such

that

∀f ∈M,Tf
déf.=
ˆ

X
fg dµ = 0

Let us show that g = 0. Since T ∈ (Lq(µ))′, ii. implies that for
all f0 ∈ M̄ , Tf0 = 0, and since M is dense in Lq(µ), it follows that
T = 0. By the isometry J , since T = J(g), we conclude that g = 0
on Lq(µ), hence g = 0 µ-almost everywhere. □

Proposition I.1 : Density of smooth functions

The set of monomial functions {x 7−→ xn, n ∈ N} generates a dense subspace of Lq(γ), for all q ∈ [1,+∞[.
In particular, the set S of smooth functions is dense in Lq(R).

Proof : We use the lemma.
• We begin with the case where q ∈]1,+∞[ and its conjugate

q′ ∈]1,+∞[ cannot be infinite : 1
q

+ 1
q′ = 1. Let g ∈ Lq′ (γ) such that

∀n ∈ N,
ˆ

R
g(x)xn dγ(x) = 0.

We want to prove that g = 0 almost everywhere (in the sens of
Lebesgue measure). We will show that ĝ = 0. We want to prove that
pour all ξ ∈ R :

ˆ

R
g(x)eiξx dγ(x) =

+∞∑

n=0

(iξ)n
n!

ˆ

R
g(x)xn dγ(x) = 0

To prove this switching between sum and integral, we have to
show that, when ξ ∈ R :

+∞∑

n=0

ˆ

R

∣∣∣ (ixξ)
n

n!
g(x)e

−x2
2

∣∣∣ dx < +∞

To prove it, we switch by Fubini-Tonelli theorem :

+∞∑

n=0

ˆ

R

∣∣∣ (ixξ)
n

n!
g(x)e

−x2
2

∣∣∣ dx =
ˆ

R
|g(x)|e|xξ|e

−x2
2 dx.

And we use the Hölder inequality :

+∞∑

n=0

ˆ

R

∣∣∣ (ixξ)
n

n!
g(x)e

−x2
2

∣∣∣ dx ⩽
√

2π∥g∥Lq(γ)

ˆ

R
e|xξ|e

−x2
2 dx.

And as a consequence, we have shown that ĝ = 0, so g = 0
almost everywhere. The generated set of monomials is then dense in
Lq(γ), and since this space is included in S, it follows that S is dense
in Lq(γ), for all q > 1.
• The case q = 1 is almost the same. Let g ∈ L∞(γ). We use the

Fourier transform to show that g = 0 almost everywhere. The only
thing that changes is how we justify the switching, which is easier
since :
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+∞∑

n=0

ˆ

R

∣∣∣ (ixξ)
n

n!
g(x)e

−x2
2

∣∣∣ dx ⩽ ∥g∥L∞

ˆ

R
e|ξx|e

−x2
2 dx

which is finite. □

Remind the definition of a closable operator, and let us use it for the derivative operator.

Proposition I.2 : Closable operator

Let (A,D(A)) an operator with domain D(A), that is a linear map A : D(A) −→ F defined on a subspace
D(A) of a Banach space E into a Banach space F . Then, the following propositions are equivalents :

(i) There is an operator (B,D(B)) such that D(A) ⊂ D(B), B|D(A)
= A and D(B) is closed in E ;

(ii) If Γ(A) déf.= {(f,Af), f ∈ D(A)} ⊂ E × F , then there exists an operator (B,D(B)) such that Γ(A) =
Γ(B), where the closure is taken for the product norm of E × F ;

(iii) For all (fn)n ∈ D(A)N such that (fn)n converges in E to 0 and (Afn)n converges in F to g then g = 0.
In this case, we say that A is closable, and we note B = Ā the closure of A.

Definition I.2
We consider the derivative operator (D,S) on Lq(γ) defined by

∀f ∈ S, Df = f ′ ∈ S ⊂ Lq(γ).

We note Dp the p-th iteration of D on S.

Proposition I.3 : Extension of the derivative operator

For all p ∈ N∗, the operator (Dp,S) is closable in Lq(γ).

In the following, we will still note D the extension of (D,S).

Proof : We will use the sequence characterization of the propo-
sition I.2.. Let first make a observation.
• First, we will observe that for f ∈ S :

ˆ

R
f ′(x) dγ(x) =

ˆ

R
xf(x) dγ(x).

Since f is C∞, an integration by parts can conclude this equality.
We wrote for f ∈ S :

[δf ](x) déf.= f ′(x)− xf(x).
Then δ sends S to itself and satisfies

∀f ∈ S,
ˆ

R
[δf ](x) dγ(x) = 0.

• Let p ∈ N∗ and (fn)n ∈ SN such that
ˆ

R
|fn(x)|q dγ(x) −−−−−→

n→+∞
0

and such that there is η ∈ Lq(γ) satisfying :
ˆ

R

∣∣∣f (p)
n (x)− η(x)

∣∣∣
q

dγ(x) −−−−−→
n→+∞

0

Let us prove that η = 0. To do that, we show that for every
g ∈ S :

ˆ

R
η(x)g(x) dγ(x) = 0

Since S is dense in Lq(γ), that would implies that η = 0 almost
everywhere, by the lemme I.1, so η = 0 in Lq(γ).

To show the integral equality, we proceed by integration by parts.
We observe indeed that

ˆ

R
f

(p)
n (x)g(x) dγ(x) =

ˆ

R
f

(p−1)
n (x)[δg](x) dγ(x).

By induction, we conclude that
ˆ

R
f

(p)
n (x)g(x) dγ(x) =

ˆ

R
fn(x)[δpg](x) dγ(x).

Moreover, by Hölder inequality :

∣∣∣
ˆ

R
fn(x)[δpg](x) dγ(x)

∣∣∣ ⩽ ∥fn∥Lq(γ)∥δpg∥Lq′ (γ) −−−−−→n→+∞
0,

since δpg ∈ S ⊂ Lq′ (γ). Finally, by continuity of the map

J :
(
Lq(γ) −→ R
f 7−→

´

R f(x)g(x) dγ(x)

)
,

we have :

ˆ

R
η(x)g(x) dγ(x) = lim

n→+∞
fn(x)g(x) dγ(x) = 0.

That proves that η = 0, hence (Dp,S) is closable in Lq(γ). □

By this proposition, we can write Dpf = f (p) for every f ∈ Lq(γ) and p ∈ N∗, as follows : since S is dense into
Lq(γ), we can consider a sequence (fn)n ∈ SN converging to f in Lq(γ). We can by consequence write
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Dpf
déf.= lim

n→+∞
D(p)fn,

where the limit is taken in Lq(γ). That being said, we can enter the subject by defining the space D.

Definition I.3
Let p ∈ N and q ∈ [1,+∞[. We denote by Dp,q the closure of S the following norm :

∀f ∈ Lq(γ), ∥f∥Dp,q
déf.=
[

p∑

k=0

∥∥∥f (k)
∥∥∥

q

Lq(γ)

] 1
q

=
[

p∑

k=0

ˆ

R

∣∣∣f (k)(x)
∣∣∣
q

dγ(x)
] 1
q

where f (k) is taken in the sens of Dkf , defined previously. We also note

D∞,q déf.=
+∞⋂

p=1
Dp,q

We check that the last definition is correct by observing that Dp+1,q ⊂ Dp,q.
An element f ∈ Lq(γ) belongs to Dp,q if and only if there exists a sequence (fn)n of elements of S such that

∀k ∈ J0, pK,
ˆ

R

∣∣∣f (k)
n (x) − f (k)(x)

∣∣∣
q

dγ(x) −−−−−→
n→+∞

0,

if and only if, since D is closed :
ˆ

R
|fn(x) − f(x)|q dγ(x) −−−−−→

n→+∞
0 and ∀k ∈ J1, pK,

(
fk

n

)
n

is a Cauchy sequence.

Definition I.4

Let p ∈ N and q ∈ [1,+∞[. Then, the operator (Dp,Dp,q) on
(
Lq(γ), ∥·∥Lq(γ)

)
is called the p-th derivation

operator.

A consequence of the closability of Dp is the following.

Proposition I.4 : Domain of the derivative operator

The set Dp,q is the domain of the closed operator Dp on Lq(γ).

I.2 Case of square integrability

Proposition I.5 : Divergence

Let

D
déf.=
{
g ∈ L2(γ),∃C > 0,∀f ∈ S,

∣∣∣∣
ˆ

R
f (p)(x)g(x) dγ(x)

∣∣∣∣ ⩽ C∥f∥L2(γ)

}
.

For all g ∈ D, there exists an unique element δpg ∈ L2(γ) such that

∀f ∈ S,
ˆ

R
f (p)(x)g(x) dγ(x) =

ˆ

R
f(x)[δpg](x) dγ(x)

We call the operator (δ,D) the p-th divergence operator.

Proof : Let g ∈ D. Then, by hypothesis,
( S −→ R

f 7−→
´

R f
(p)(x)g(x) dγ(x)

)
is continuous for ∥·∥L2(γ). By consequence, we can extend it to

L2(γ), and apply Riesz representation theorem. □
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The map
(

(S, ∥·∥Dp,2) −→ R
f 7−→

´

R g(x)f (p)(x) dγ(x)

)

is continuous, hence the equality defining D(δp) the same as the equality with f ∈ Dp,2. The set S is included
in D(δp). By the same continuity, it follow that Dp,2 ⊂ D(δp).

Definition I.5
For all f ∈ S, we note Pt the Ornstein-Uhlenbeck operator defined by :

∀t ⩾ 0,∀x ∈ R, [Ptf ](x) def.=
ˆ

R
f
(
e−tx+

√
1 − e−2ty

)
dγ(y).

An interesting interpretation of Pt is the following : if N ∼ N (0, 1), then

[Ptf ](x) = E
[
f
(
e−tx+

√
1 − e−2tN

)]
.

Proposition I.6 : Ornstein-Ulenbeck properties

(i) For all f ∈ L1(γ) and for all s, t ⩾ 0, Pt+sf = PtPsf ;
(ii) For all f ∈ Lq(γ), for all t ⩾ 0,

∥Ptf∥Lq(γ) ⩽ ∥f∥Lq(γ).

In other words, Pt is a contraction of Lq(γ).
(iii) For all f ∈ D1,2, t ⩾ 0, Pt ∈ D1,2 with

DPtf = e−tPtDf

Proof : (i) Let s, t ⩾ 0. Then

[PtPsf ](x) =
ˆ

R

ˆ

R
f

(
e−(s+t)x

+ ye−s
√

1− e−2t + z
√

1− e−2s
)

dγ(z) dγ(y).

Hence, if Y, Z ∼ N (0, 1) are independents, then

[PtPsf ](x) = E
[
f

(
e−(s+t)x

+ Y e−s
√

1− e−2t + Z
√

1− e−2s
)]
.

We can compute the characteristic function, by independence :

E
[

exp
(

iu
[
Y e−s

√
1− e−2t + Z

√
1− e−2s

])]

= E
[

exp
(

iuY e−s
√

1− e−2t
)]
·

E
[

exp
(

iuZ
√

1− e−2s
)]

.

And since Y, Z ∼ N (0, 1) :

E
[

exp
(

iu
[
Y e−s

√
1− e−2t + Z

√
1− e−2s

])]

= exp

(
−u2e−2s

(
1− e−2t

)

2

)
·

exp
(

−u2(1−e−2s)
2

)
.

Then,

E
[

exp
(

iu
[
Y e−s

√
1− e−2t + Z

√
1− e−2s

])]

= exp

(
−u2

(
1− e−2(t+s)

)

2

)
.

We can conclude that :

1√
1− e−2(t+s)

[
Y e−s

√
1− e−2t + Z

√
1− e−2s

]
∼ N (0, 1).

If N ∼ N (0, 1), this means for PtPs that :

[PtPsf ] (x) = E
[
f

(
e−(s+t)x+

√
1− e−2(t+s)N

)]
.

Finally, we obtain our semi group relation :

[PtPsf ](x) = Pt+sf(x).
(ii) Let f ∈ S. By Jensen inequality :

ˆ

R

∣∣∣E
[
f

(
e−tx+

√
1− e−2tN

)]∣∣∣
q

dγ(x)

⩽
ˆ

R
E
[∣∣∣f
(
e−tx+

√
1− e−2tN

)∣∣∣
q]

dγ(x)

Let X ∼ N (0, 1) independent of N . Then :

ˆ

R

∣∣∣E
[
f

(
e−tx+

√
1− e−2tN

)]∣∣∣
q

dγ(x)

⩽ E
[∣∣f (e−tX +

√
1− e−2tN

)∣∣q]
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We can once again compute the characteristic function of what is
inside the expectation, by using independence, the expression of the
characteristic function of a Gaussian random variable, and the transfer
theorem.

E
[

exp
(

iu
(
e−tX +

√
1− e−2tN

))]

= exp
(
−u2e−2t

2

)
exp

(
−u2

(
1− e−2t

)

2

)

So,

E
[

exp
(

iu
(
e−tX +

√
1− e−2tN

))]
= e

−u2
2

and e−tX +
√

1− e−2tN ∼ N (0, 1). Finally :

ˆ

R

∣∣∣E
[
f

(
e−tx+

√
1− e−2tN

)]∣∣∣
q

dγ(x)
⩽ E [|f (Z)|q ]

where Z ∼ N (0, 1). That is :

∥Ptf∥Lq(γ) ⩽ ∥f∥Lq(γ).

Since both size are well-defined for f ∈ Lq(γ), and by the conti-
nuity we just checked on the dense space S, we conclude that the
inequality remains true on Lq(γ).

(iii) By contraction property of Pt, if f ∈ D1,2, then Ptf ∈ D1,2.
Let us show the relation between D and Pt. By continuity of Pt, it is
sufficient to check this for f ∈ S, where we can freely switch integrals
and derivatives. We have :

[DPt f ](x) = e−t
ˆ

R
f ′
(
e−tx+

√
1− e−2ty

)
dγ(y).

So,

[DPt f ](x) = e−t[Ptf ′](x) = e−t[PtDf ](x).
This equality stays true by continuity for all f ∈ D1,2.

□

We can see (Pt)t as a semi-group associated with a stochastic process.

Proposition I.7 : Ornstein-Uhlenbeck stochastic process

Let (Xx
t )t the stochastic process defined by the solution of the following stochastic differential equation starting

from X0 = x :

dXt =
√

2 dBt −Xt dt

Hence, for all f ∈ S :

∀x ∈ R, [Ptf ](x) = E [f (Xx
t )] .

Proof : • Let us write the explicit solution of this SDE. If we
remove the Brownian part, then the solution would be Xt = e−tX0.
We consider as a consequence

f(t, x) def.= etx

and we apply the Itô formula to Yt
def.= f(t,Xt).

dYt = etXt dt+ et dXt.
We substitute by using the SDE that Xt solves :

dYt = etXt dt+
√

2et dBt − etXt dt.
That is

dYt =
√

2etdBt,
meaning that :

Yt = Y0 +
√

2
ˆ t

0
es dBs

And then, we finally have, since Y0 = X0 :

Xt = e−tX0 +
√

2
ˆ t

0
e−(t−s) dBs

• Let f ∈ S. Then, for all x ∈ R,

E [f (Xx
t )] = E

[
f

(
etx+

√
2
ˆ t

0
e−(t−s) dBs

)]
.

Let us show that

At
def.=
√
t

√
2√

1− e−2t

ˆ t

0
e−(t−s) dBs

is a Brownian motion. To do so, we use the Lévy characterisation
theorem. In other words, we compute ⟨A,A⟩t :

⟨A,A⟩t = 2te−2t

1− e−2t

ˆ t

0
e2s ds.

It yields to :

⟨A,A⟩t = t.

Since the process A is continuous, we conclude that A is a Brow-
nian motion. So At ∼ N (0, t), and so

√
2√

1− e−2t

ˆ t

0
e−(t−s) dBs ∼ N (0, 1).

If N ∼ N (0, 1) we get :

E [f (Xx
t )] = E

[
f

(
etx+

√
1− e−2tN

)]
.

So E
[
f
(
Xx
t

)]
= [Ptf ](x). □

Since (Pt)t, we can associate it an infinitesimal generator L.
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Proposition I.8 : Infinitesimal generator

Let (L,D(L)) the infinitesimal generator of Pt on L2(γ), that is the unbounded operator defined on

D(L) def.=
{
f ∈ L2(γ)

∣∣∣∣∣∃g ∈ L2(γ),
ˆ

R

∣∣∣∣
Ptf − f

t
− g

∣∣∣∣
2

dγ −−−−→
t→0+

0
}
,

by

Lf = lim
t→0+

Ptf − f

t
,

where the limit takes place in L2(γ). Then S ⊂ D(L). Moreover, for all f ∈ S,

Lf = −δDf

Proof : • Let f ∈ S. Let us show that f ∈ D(L), that is Ptf−f
t

admits a limit when [t→ 0] in L2(γ). Consider first the simple conver-
gence, taking a look at the derivative with respect to t of Ptf . Since
f ∈ S, we can switch derivative and integral :

d
dt

[Ptf ] (x)
= −e−tx[PtDf ](x)

+ e−2t
√

1− e−2t

ˆ

R
f ′
(
e−tx+

√
1− e−2ty

)
y dγ(y).

And we integrate by parts, knowing that "y dγ(y)" becomes
"dγ(y)" with a derivative on f :

d
dt

[Ptf ] (x)
= −e−tx[PtDf ](x)

+ e−2t
ˆ

R
f ′′
(
e−tx+

√
1− e−2ty

)
dγ(y).

Finally :

d
dt

[Ptf ] (x) = −e−tx [PtDf ] (x) + e−2t
[
PtD

2f
]

(x).

But, we also have for all g ∈ D(L) :

Lg = d
dt

[Ptg]
∣∣∣
t=0

Hence, we would have :

[Lf ](x) = −xf ′(x) + f ′′(x)

So, to prove that f ∈ D(L), we just need to conclude by domi-
nated convergence. Indeed, since f ∈ S, we consider k such that f
and all its derivative are bounded by O(|x|k) at +∞. Then, by mean
value theorem, we have the existence of a constant C such that

∣∣∣Pt − f
t

∣∣∣ ⩽ 1− e−t

t
|x|+ C

√
1− e−2t

t
.

Then, we have :
∣∣∣Pt − f

t

∣∣∣ ⩽ |x|+ C
√

2.

Hence, we proved the convergence in L2(γ). This proved that
S ⊂ D(L) and the expected equality, since Lf = −δf ′ = −δDf . □

Proposition I.9 : Heisenberg relation of D ans δ

We have [D, δ] = idS . By induction :

∀p ∈ N∗,∀f ∈ S, [D, δp]f = pδp−1f

Proof : It is a straightforward computation. If f ∈ S,

[δ,D]f = δf ′ −Dδf,
with δf(x) = xf(x)− f ′(x). Hence,

Dδf(x) = xf ′(x) + f(x)− f ′′(x)

And so

[δ,D]f(x) = xf ′(x)− f ′′(x)− xf ′(x)− f(x) + f ′′(x) = −f(x).

□

The following corollary will show us a new way to use Pt thanks to those relations.

Corollary I.1 : A relation with Pt

Let f ∈ S. Then, for all x ∈ R,
ˆ +∞

0
e−2t [Ptf

′′] (x) dt− x

ˆ +∞

0
e−t [Ptf

′] (x) dt = f(x) −
ˆ

R
f(y) dγ(y).
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Proof : Recall that if f ∈ S :

[δf ](x) = f ′(x)− xf(x).
We use the relation DPt = e−tPtD to the left hand side of the

wanted equality, we call it A :

A
def.=
ˆ +∞

0
e−2t

[
Ptf

′′] (x) dt− x
ˆ +∞

0
e−t [Ptf ′] (x) dt.

Then

A =
ˆ +∞

0

([
D2Ptf

]
(x)− x [DPtf ] (x)

)
dt.

We recover δ :

A =
ˆ +∞

0
[δDPt]f(x) dt.

Since L = −δD, we get :

A = −
ˆ +∞

0
[LPt]f(x) dt.

And by property of infinitesimal generator, LPt = dPt
dt , so good

as :

A = −
ˆ +∞

0

dPtf
dt

(x) dt.

By dominated convergence,

P∞f(x) =
ˆ

R
f(y) dγ(y).

We finally get what we want :

A = P0f(x)− P∞f(x) = f(x)−
ˆ

R
f(y) dγ(y).

□

I.3 Hermite polynomials

Definition I.6
Let p ∈ N. We define the p-th Hermite polynomial as H0 = 1 if p = 0 and for p ⩾ 1 :

Hp
def.= δp1,

where 1 = 1R is the constant function equal to 1. We make the convention that H−1 = 0 is the null polynomial.

Consequently, we define Hp as the unique function of L2(γ) such that

∀g ∈ Dp,2,

ˆ

R
Hp(x)g(x) dγ(x) =

ˆ

R
g(p)(x) dγ(x).

Here are the fundamental properties of the Hermite polynomials, beginning by the fact that Hp is indeed a
polynomial function by using a induction relation.

Proposition I.10 : Recurrent relation for Hp

For any p ⩾ 0 and t ⩾ 0 :
(i) H ′

p = pHp−1 ;
(ii) Hp+1(x) = xHp(x) − pHp−1(x) ;
(iii) LHp = −pHp ;
(iv) PtHp = e−ptHp.

Proof : (i) We use the Heisenberg relation for D and δ :

DHp = Dδp1 = δpD1 + pδp−11.
So,

H′
p = pHp−1.

We conclude that Hp is indeed a polynomial by this relation.
(ii) Let us see that Hp+1 = δHp, meaning that, with the defini-

tion of δ :

Hp+1(x) = xHp(x)−H′
p(x) = xHp(x)− pHp−1(x)

by using (i).
(iii) We have L = −δD so :

LHp = δDHp = pδHp−1 = pHp.

(iv) Let us define y(t) = PtHp(x). We have y(0) = Hp(x) and

y′(t) = PtLHp(x) = −pPtHp(x) = −py(t)

so y(t) = e−pty(0), meaning that PtHp = e−ptHp. □

We can claim that Hp as the same parity as p, we can prove it by induction and using (ii).
Here’s an important property that justifies the use of those polynomials.
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Proposition I.11 : Hilbert basis of L2(γ)

The family
{

1√
p!
Hp, p ∈ N

}
generates an orthonormal basis of L2(γ), in the sens of Hilbert space.

Proof : 1. We begin by checking that (Hp)p is an orthogonal
family. This a consequence from the following recurrent relation : for
p ∈ N and r ∈ N :

ˆ

R
Hp(x)Hp+r(x) dγ(x) = (p+ r)

ˆ

R
Hp−1(x)H(p−1)+r(x) dγ(x).

This relation is true by using the fact that Hp = δp1 :

ˆ

R
Hp(x)Hp+r(x) dγ(x) =

ˆ

R
[δHp−1](x)Hp+r(x) dγ(x).

By definition of δ :

ˆ

R
Hp(x)Hp+r(x) dγ(x) =

ˆ

R
Hp−1(x)H′

p+r(x) dγ(x).

And by the expression of the derivative of Hp given by (i), we
finally have :

ˆ

R
Hp(x)Hp+r(x) dγ(x) = (p+ r)

ˆ

R
Hp−1(x)H(p−1)+r(x) dγ(x).

2. Let us prove by induction on p ⩾ 0 that

∀r ⩾ 1,
ˆ

R
Hp(x)Hp+r(x) dγ(x) = 0

For p = 0, we check that

ˆ

R
Hr(x) dγ(x) =

ˆ

R
δr1(x) dγ(x) = 0

Then, if we suppose the property true for p ⩾ 0, we use the rela-
tion to prove it at the rank p + 1. That concludes the induction, we
have shown that (Hp)p is a orthonormal family.

3. Let us compute
´

RHp(x)2 dγ(x). To do that, we use the same
recurrent relation. For p = 0, we have

ˆ

R
H0(x)2 dγ(x) = 1.

Then, for p ⩾ 1,
ˆ

R
Hp(x)2 dγ(x) = p

ˆ

R
Hp−1(x)2 dγ(x).

Finally, we obtain that

∥Hp∥L2(γ) =
√
p!

And so
(
Hp√
p!

)
p

is an orthonormal family of L2(γ).

4. It remains to show that the family is total. By (ii), we can show
that Hp is polynomial whose degree is p. Hence, the subspace spanned
by the Hp is the same the one spanned by the monomials. The pro-
position I.1 shows that this subspace is dense in L2(γ). Consequently,
the family (Hp)p generates a dense subspace of L2(γ). □

We can decompose any function L2 in this basis. The following proposition is more specific about D∞,2 functions.

Proposition I.12 : Decomposition of elements of D∞,2

Let f ∈ D∞,2. Then,

f =
+∞∑

p=0

(
1
p!

ˆ

R
f (p)(x) dγ(x)

)
Hp

where the convergence of the series takes place in L2(γ).

Proof : Since the family
(

1√
p!
Hp

)
p

is a orthonormal basis, we

obtain the following decomposition for all f ∈ L2(γ) :

f =
+∞∑

p=0

( 1
p!

ˆ

R
f(x)Hp(x) dγ(x)

)
Hp,

where the convergence is in L2(γ). Since f ∈ D∞,2, then for all
p ∈ N :

ˆ

R
f(x)Hp(x) dγ(x) =

ˆ

R
fp(x) dγ(x).

We obtain the wanted decomposition. □

An another way to express it uses the expectation of each derivative of f . More precisely, if N ∼ N (0, 1) then
in L2(γ) :

f =
+∞∑

p=0

E
[
f (p)(N)

]

p! Hp.

Corollary I.2 : Exponential formula and Rodrigues formula

1. If c > 0 then we have in L2(γ) :
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ecx− c2
2 =

+∞∑

p=0

cp

p!Hp(x).

2. Rodrigues formula. We have the expression for Hp :

∀p ⩾ 1, Hp(x) = (−1)pe
x2
2

dp

dxp

[
e

−x2
2

]
.

Proof : 1. We use the decomposition of the previous proposition
for f(x) = ecx

ecx =
+∞∑

p=0

cp

p!

(ˆ
R
ecx dγ(x)

)
Hp.

We just have to compute this integral to conclude. To do this, we
just use the canonical form of the trinomial :

x2

2
− cx = (x− c)2

2
− c2

2
.

We get :
ˆ

R
ecx dγ(x) = e

c2
2 .

And finally :

ecx− c2
2 =

+∞∑

p=0

cp

p!
Hp.

2. We use the previous reduction of the trinomial

ecx− c2
2 = e

x2
2 e

−(x−c)2
2 .

We expend in power series the second exponential term around c.

ecx− c2
2 =

+∞∑

p=0

e
x2
2

(−c)p
p!

dp

dxp

[
e

−x2
2

]
.

By unicity of the expend in power series around c (equality in L2

implies equality almost everywhere), we conclude that almost everyw-
here

Hp(x) = (−1)pe
x2
2

dp

dxp

[
e

−x2
2

]
,

equality remaining true by continuity of both sides. □

We can deduce an another relation between Hermite polynomials thanks to those relations.

Corollary I.3 : A new relation between Hermite polynomials
For all p, j ∈ N :

HpHp+j =
p∑

r=0
r!
(
p

r

)(
p+ j

r

)
H2(p−r)+j

Proof : This proof is quite technical and only comes from the
expansion :

HpHp+j =
+∞∑

s=0

[ˆ
R

(HpHp+j)(s) dγ
]
Hs

s!
.

We compute the integral thanks to the Leibniz formula :

(HpHp+j)(s) =
s∑

k=0

(s
k

)
H

(k)
p H

(s−k)
p+j .

By iterating the equality H′
p = pHp−1, we have for all p, k ∈ N :

H
(k)
p = p!

(p− k)!
Hp−k1{k⩽p}.

Hence, we have the following expression of the s-th derivative of
HpHp+j :

(HpHp+j)(s)

=
s∑

k=0

(s
k

) p!
(p− k)!

(p+ j)!
(p+ j − s+ k)!

·Hp−kHp+j−s+k1{k⩽p}∩{s−k⩽p+j}.

By orthogonality of the family (Hp)p, we have

ˆ

R
Hp−kHp+j−s+k dγ = 0,

except if 2k = s− j. In this case, we have
ˆ

R
H2
p−k dγ = (p− k)!.

Hence, we have the following heavy expression of the expansion
of HpHp+j :

HpHp+j

=
+∞∑

s=0
s−j∈2N

( s
s−j

2

) p!(
p− j−s

2

)
!

(p+ j)!(
p− j−s

2

)
!

(
p− j − s

2

)
!

·1{
s−(p+j)⩽ s−j

2 ⩽p
}Hs
s!
.

One of the
(
p− j−s

2

)
! simplifies. We do the change 2r = s − j

to clear the expression.

HpHp+j

=
+∞∑

r=0

(2r + j

r

) p!(p+ j)!
(j + 2r)!(p− r)!

·1{2r−p⩽r⩽p}Hj+2r.
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But, 2r − p ⩽ r if and only if r ⩽ p. So, we have here the
expression :

HpHp+j =
p∑

r=0

(2r + j

r

) p!(p+ j)!
(j + 2r)!(p− r)!Hj+2r.

And we are done : we have

(2r + j

r

) p!(p+ j)!
(j + 2r)!(p− r)! = (2r + j)!p!(p+ j)!

r!(2r + j)!(r + j)!(p− r)! .

By arranging :
(2r + j

r

) p!(p+ j)!
(j + 2r)!(p− r)! =

(p
r

) (p+ j)!
(r + j)!

.

So, we have

HpHp+j =
p∑

r=0

(p− r)!
(p
r

)(p+ j

p− r
)
Hj+2r.

We conclude by setting the variable change r ← p− r. □

We can explicit the expansion of Hp.

Corollary I.4 : Expansion of the Hermite polynomials
For all p ∈ N and x ∈ R :

Hp(x) =
⌊ p2 ⌋∑

k=0

(−1)kp!
k!(p− 2k)!2k

xp−2k

Proof : We use the relation H′
p = pHp−1 and we proceed by

induction. But, first, we need to compute Hp(0). To do this, we use
the exponential formula, applied in x = 0 :

e
−c2

2 =
+∞∑

p=0

cp

p!
Hp(0).

We expend in power series this function :

e
−c2

2 =
+∞∑

r=0

(−1)rc2r

2rr!
.

By unicity of this expansion, we finally have that Hp(0) = 0 if p
is odd, and if p = 2r is even, then

Hp(0) = (−1)
p
2

2
p
2 ( p2 )!

.

Hence, we got this recurrent expression for Hp :

Hp(x) = p

ˆ x

0
Hp−1(y) dy +Hp(0).

We conclude by induction. □

I.4 Applications
I.4.1 Variance expansions

Proposition I.13 : Variance expansion

Let N ∼ N (0, 1).
1. Let f ∈ D∞,2. We have the following expansion for the variance of f(N) :

Var(f(N)) =
+∞∑

n=1

1
n!E

[
f (n)(N)

]2
.

2. Let f ∈ S. If

E
[
f (n)(N)2]

n! −−−−−→
n→+∞

0,

then we have the following expansion for the variance of f(N) :

Var(f(N)) =
+∞∑

n=1

(−1)n+1

n! E
[
f (n)(N)2

]
.

Proof : 1. We have the following decomposition for f in L2(γ) :

f =
+∞∑

p=0

E
[
f (p)(N)

]

p!
Hp

By consequence, their L2(γ) norm are equals, which gives :

ˆ

R
f(x)2 dγ(x) =

ˆ

R

(
+∞∑

p=0

E
[
f (p)(N)

]

p!
Hp(x)

)2

dγ(x).
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Since
(
Hp√
p!

)
p

is a orthonormal basis of L2(γ), we can use the

Pythagoras theorem :

ˆ

R
f(x)2 dγ(x) =

ˆ

R

+∞∑

p=0

(
E
[
f (p)(N)

]
√
p!

)2

dγ(x).

The content inside the integral does not longer depends on x. We
have consequently obtain the wished expansion :

E
[
f(N)2

]
= E[f(N)]2 +

+∞∑

p=1

E
[
f (p)(N)

]2

√
p!

.

2. We have chosen f ∈ S. The idea is to represent the variance
as an increment of a function g depending of Pt, using the facts that
P0f = f and P∞f = E[f(N)]. Here’s the plan : we introduce for all
t ∈]0, 1[ :

g(t) def.= E

[([
P− ln(t)

2
f

]
(N)
)2
]

a. We calculate first all the derivatives of g :

g(p)(t) = E

[([
P− ln(t)

2
f (p)
]

(N)
)2
]
.

b. Then, we use the Taylor formula with integral reminder to show
that we have the expansion around 1 :

g(1)− g(0) = −
+∞∑

p=1

(−1)pg(p)(1)
p!

,

where we have extended all the derivatives of g to [0, 1]. This ex-
tension gives that Var(f(N)) = g(1)−g(0) and allows us to conclude.

Here we go. A little word on g : the logarithm will be useful for
the relation DPt = e−tPtD, the " 1

2 " to balance the square inside the
expectation, and the "−" to consider g on a finite interval ]0, 1[, on
which we could extend g on a segment [0, 1]. Let’s go with the proof.

a. Since f ∈ S, we can freely interchange expectations and deri-
vatives. Doing this, we got (derivative of different compositions, the
square, the Pt operator whose derivative is L) :

g′(t) = −1
t

E
[(
P− ln(t)

2
f(N)

)(
LP− ln(t)

2
f(N)

)]
.

We use the previous propositions to conclude. Since L = −δD,
we have :

g′(t) = 1
t
E
[(
P− ln(t)

2
f(N)

)(
δDP− ln(t)

2
f(N)

)]
.

By definition of δ as the adjoint of the derivative :

g′(t) = 1
t
E

[(
DP− ln(t)

2
f(N)

)2
]
.

By using DPt = e−tPtD :

g′(t) = 1
t

(
e

− ln(t)
2

)2
E

[(
P− ln(t)

2
f ′(N)

)2
]
.

We finally have :

g′(t) = E

[(
P− ln(t)

2
f ′(N)

)2
]
.

We have by replacing f by f (p) the same expression for all the
derivatives of g.

b. By definition of P , we have

g(1) = E
[
P0f(N)2

]
= E
[
f(N)2

]
.

Moreover by dominated convergence, we have

g(t) −−−−→
t→0+

E
[
P∞f(N)2

]
= E[f(N)]2.

We can extend g by continuity on [0, 1] by those two little compu-
tations. We can do the same for all the derivatives of g, since all the
f (p) belongs to S. We can as a consequence use the Taylor formula
with integral reminder on [0, 1] :

g(0) = g(1) +
N∑

p=1

(−1)pg(p)(1)
p!

−
ˆ 1

0

tN

N !
g(N+1)(t) dt.

Let us show that the integral goes to 0 as [N → +∞]. To do this,
we use the contraction property of Pt :

0 ⩽ g(N+1)(t) ⩽ E
[
f (p+1)(N)2

]
.

Hence, by integration, we get :

0 ⩽
ˆ 1

0

tN

N !
g(N+1)(t) dt ⩽

(
ˆ 1

0

tN

N !
dt
)

E
[
f (p+1)(N)2

]
.

That is :

0 ⩽
ˆ 1

0

tN

N !
g(N+1)(t) dt ⩽

E
[
f (p+1)(N)2

]

(N + 1)!
−−−−−−→
N→+∞

0.

Finally, the integral goes to 0, and we get :

g(1)− g(0) = −
+∞∑

p=1

(−1)pg(p)(1)
p!

.

In terms of probabilistic objects, it means that

Var(f(N)) = E[f(N)2]− E[f(N)]2 =
+∞∑

p=1

(−1)p+1

p!
E
[
f (p)(N)2

]
.

Note : We can find 1. by this proof, with the same Taylor expan-
sion, but around 0 this time :

g(1)− g(0) =
+∞∑

p=1

g(p)(0)
p!

,

which is exactly what we want :

Var(f(N)) =
+∞∑

p=1

E
[
f (p)(N)

]2

p!
.

Warning, to prove that the integral remainder goes to 0, this proof

uses the hypothesis of the convergence of
E
[
f(n)(N)2

]
n! to 0, hypo-

thesis we don’t make to prove 1.. □

We can show a third expansion by using the same argument as this proof.
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M2 Part I - Malliavin calculus

Corollary I.5 : A third expansion of the variance

Let N ∼ N (0, 1) and f ∈ D∞,2. We suppose that

E
[
f (n)(N)2]

2nn! −−−−−→
n→+∞

0.

Then we have the following expansion :

Var(f(N)) =
+∞∑

n=1

1
2nn!

(
E
[
f (n)(N)

]2
+ (−1)n+1E

[
f (n)(N)2

])
.

Proof : Let us introduce g as the previous proof. Then, by a Taylor
formula with integral reminder around 1

2 , we got for all n ∈ N∗ :

g

(1
2

)
= g(0) +

n∑

p=1

g(p)(0)
2pp!

+
ˆ 1

2

0

g(n+1)(t)tn

n!
dt.

By the computation of g(n) made on the previous proof, we have
the following estimation for the integral :

0 ⩽
ˆ 1

2

0

g(n+1)(t)tn

n!
dt ⩽

E
[
f (n+1)

]

2n+1(n+ 1)!
Which converges to 0 when [n→ +∞]. We do the same expend,

but this time at 1 :

g

(1
2

)
= g(1) +

n∑

p=1

(−1)pg(p)(1)
2pp!

−
ˆ 1

1
2

g(n+1)(t)(1− t)n
n!

dt.

Since
ˆ 1

1
2

(1− t)n
n!

dt =
ˆ 1

2

0

tn

n!
dt.

So, we also have the convergence to 0 of this integral. We finally
have the two expansions :

g

(1
2

)
=

+∞∑

p=0

g(p)(0)
2pp!

=
+∞∑

p=0

(−1)pg(p)(1)
2pp!

.

We subtract to have g(1)− g(0) = Var(f(N)) :

Var(f(N)) =
+∞∑

p=1

g(p)(0)
2pp!

+ (−1)p+1g(p)(1)
2pp!

.

By the expression of g(p) in terms of f (p), this is exactly the
claimed equality. □

I.4.2 Poincaré inequalities

We present here two Poincaré inequalities, here’s the one in the first order.

Proposition I.14 : First order Poincaré inequality

Let N ∼ N (0, 1) and f ∈ D1,2. Then,

Var(f(N)) ⩽ E
[
f ′(N)2]

Proof : By continuity with the norm associated with D1,2, we just
have to check this relation for f ∈ S. By definition of the variance :

Var(f(N)) = E
[
f(N)2

]
− E[f(N)]2.

We write it as an expectation of a product.

Var(f(N)) = E [f(N) (f(N)− E[f(N)])] .
And we notice that P0f = f and P∞f = E[f(N)], by dominated

convergence. Then, we have :

Var(f(N)) = E [f(N) (P0f(N)− P∞f(N))] .
And we write this as in integral :

Var(f(N)) = −E
[
f(N)

ˆ +∞

0

dPtf
dt

(N) dt
]
.

We switch integral and expectation (possible since f ∈ S) :

Var(f(N)) = −
ˆ +∞

0
E
[
f(N) dPtf

dt
(N)
]

dt.

By the relation dPtf
dt = LPtf :

Var(f(N)) = −
ˆ +∞

0
E [f(N)[LPt f ](N)] dt.

By the expression of L proved in proposition I.7 :

Var(f(N)) =
ˆ +∞

0
E [f(N)[δDPt f ](N)] dt.

By the expression of DPt proved in proposition I.5 :

Var(f(N)) =
ˆ +∞

0
e−tE

[
f(N)[δPt f ′](N)

]
dt.

By definition of δ as the adjoint of the derivative :

Var(f(N)) =
ˆ +∞

0
e−tE

[
f ′(N)[Ptf ′](N)

]
dt.

By Cauchy-Schwarz :

Var(f(N)) ⩽
ˆ +∞

0
e−tE

[
f ′(N)2

] 1
2 E
[
[Ptf ′](N)2

] 1
2 dt.

By contraction property of (Pt)t :

15 Jérémy Zurcher



M2 Part I - Malliavin calculus

Var(f(N)) ⩽ E
[
f ′(N)2

] ˆ +∞

0
e−t dt.

And we successfully proved that :

Var(f(N)) ⩽ E
[
f ′(N)2

]
.

□

This first order inequality means that if f ′ is "small", then f(N) is concentrated around its mean. The second
order will precise how : if f ′′ is small too, then f(N) is quite close to a Gaussian distribution. Let us precise this.

Definition I.7
Let F,N two integrable random variables. Then we introduce the distance between the laws of F and N like
this : the Wasserstein distance is defined by

dW(F,N) def.= sup
ϕ∈Lip(1)

∣∣E[ϕ(F )] − E[ϕ(N)]
∣∣,

where Lip(1) stands for the set of 1-Lipschitz functions on R.

This distance is still finite, since we have supposed F,N integrable.

Proposition I.15 : Second order Poincaré inequality

Let N ∼ N (0, 1) and f ∈ D2,4 (we recall that means that f is limit of elements of S for the norm(
∥·∥4

L4(γ) + ∥D·∥4
L4(γ) +

∥∥D2·
∥∥4

L4(γ)

) 1
4 . Then, if we assume that E[f(N)] = 0 and E

[
f(N)2] = 1. Then,

dW(N, f(N)) ⩽ 3√
2π
(
E
[
f ′(N)4] · E

[
f ′′(N)4]) 1

4 .

To prove it, we will use a main result about this distance, we will prove it in the second part, about the Stein’s
method.

Lemma I.2 : Stein’s bound
Let N ∼ N (0, 1) and F an integrable random variable. Then

dW(F,N) ⩽ sup
ϕ∈C1∩Lip

(√
2
π

)
∣∣E [Fϕ(F )] − E [ϕ′(F )]

∣∣.

Proof : Here’s the steps. Let ϕ ∈ C1 ∩ Lip
(

2
π

)
and f ∈ S.

a. We interpret the first term with Pt :

E[f(N)ϕ(f(N))] = E

[
ϕ′(f(N))f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]
.

b. We get the first inequality :
∣∣E [Fϕ(F )]− E

[
ϕ′(F )

] ∣∣

⩽

√
2
π

√
Var
(
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

)
.

c. Using the first order Poincaré inequality, the contraction pro-
perty and classical inequalities, we conclude the estimation of the
square root of this variance.

Let us begin the proof.
a. We use the usual trick about Ptf , with P0f = f and

P∞f = E[f(N)]. Since E[f(N)] = 0, it gives here

E[f(N)ϕ(f(N))] = E [(P0f(N)− P∞f(N))ϕ(f(N))] .
By the integral interpretation, and since d

dtPt = L :

E[f(N)ϕ(f(N))] = −E
[(
ˆ +∞

0
LPtf(N) dt

)
ϕ(f(N))

]
.

Since L = −δD, and by switching integral and expectation :

E[f(N)ϕ(f(N))] =
ˆ +∞

0
E [[δDPt]f(N)ϕ(f(N))] dt.

By definition of δ :

E[f(N)ϕ(f(N))] =
ˆ +∞

0
E
[
[DPt]f(N)f ′(N)ϕ′(f(N))

]
dt.

And by the relation DPt = e−tPtD :

E[f(N)ϕ(f(N))] =
ˆ +∞

0
e−tE

[
Ptf

′(N)f ′(N)ϕ′(f(N))
]

dt.

Finally, we switch again to have the following expression :

E[f(N)ϕ(f(N))] = E

[
f ′(N)ϕ′(f(N))

ˆ +∞

0
e−tPtf ′(N) dt

]
.

b. By a., we can factorize by ϕ′(f(N)) in the computation of
what is inside the supremum :

∣∣E [Fϕ(F )]− E
[
ϕ′(F )

] ∣∣

⩽
∣∣E
[
ϕ′(f(N))

(
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt− 1

)]∣∣.
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By triangular inequality, and since ϕ is
√

2
π

-lipschitzian,
∣∣E [Fϕ(F )]− E

[
ϕ′(F )

] ∣∣

⩽

√
2
π
E

[∣∣∣∣f ′(N)
ˆ +∞

0
e−tPtf ′(N) dt− 1

∣∣∣∣
]
.

However,

E

[
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]
= 1.

Indeed, if we apply a. with ϕ = idR, then

E[f(N)2] = E

[
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]

and since we suppose that E[f(N)2] = 1, we can conclude. Back
to our inequality, we use the concavity of the square root, like this :

∣∣E [Fϕ(F )]− E
[
ϕ′(F )

] ∣∣

⩽

√
2
π
E



√∣∣∣∣f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt− 1

∣∣∣∣
2

 .

By Jensen inequality for concavity, we get :
∣∣E [Fϕ(F )]− E

[
ϕ′(F )

] ∣∣

⩽

√
2
π

√√√√E

[∣∣∣∣f ′(N)
ˆ +∞

0
e−tPtf ′(N) dt− 1

∣∣∣∣
2
]
.

This gives us the wanted inequality :
∣∣E [Fϕ(F )]− E

[
ϕ′(F )

] ∣∣

⩽

√
2
π

√
Var
[
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]
.

c. Let us note

F (x) = f ′(x)
ˆ +∞

0
e−tPtf ′(x) dt

Then, by first order Poincaré inequality :

Var(F (N)) ⩽ E
[
F ′(N)2

]
.

We compute F ′, using the D operator and the relation DPt =
e−tPtD :

F ′(x) = f ′′(x)
ˆ +∞

0
e−tPff

′(x) dt

+ f ′(x)
ˆ +∞

0
e−2tPtf

′′(x) dt

In our case, it writes
√

Var
[
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]

⩽ E

[(
f ′′(N)

ˆ +∞

0
e−tPff

′(N) dt

+f ′(x)
ˆ +∞

0
e−2tPtf

′′(x) dt
)2
] 1

2

.

By triangular inequality on L2 :
√

Var
[
f ′(N)

ˆ +∞

0
e−tPtf ′(N) dt

]

⩽ E

[(
f ′′(N)

ˆ +∞

0
e−tPff

′(N) dt
)2
] 1

2

+E

[(
f ′(x)

ˆ +∞

0
e−2tPtf

′′(x) dt
)2
] 1

2

.

Let’s call the first term (A), and the second (B). Then, by Cauchy-
Schwarz inequality :

(A) ⩽ E
[
f ′′(N)4

] 1
4 E

[(
ˆ +∞

0
e−tPtf ′(N) dt

)4
] 1

4

.

By Jensen inequality :

(A) ⩽ E
[
f ′′(N)4

] 1
4 E

[
ˆ +∞

0
e−4tPtf

′(N)4 dt
] 1

4

.

We switch the second expectation and integral :

(A) ⩽ E
[
f ′′(N)4

] 1
4

(
ˆ +∞

0
e−4tE

[
Ptf

′(N)4
]

dt
) 1

4

.

By contraction property of Pt in L4(γ) :

(A) ⩽ E
[
f ′′(N)4

] 1
4 E
[
f ′(N)4

] 1
4

(
ˆ +∞

0
e−4t dt

) 1
4

.

The explicit computation of the integral finally yields to

(A) ⩽
√

2
2

E
[
f ′′(N)4

] 1
4 E
[
f ′(N)4

] 1
4 .

By the same argument,

(B) ⩽ 1
2

3
4
E
[
f ′′(N)4

] 1
4 E
[
f ′(N)4

] 1
4 .

And finally
∣∣E [f(N)ϕ(f(N))]− E

[
ϕ′(f(N))

] ∣∣

⩽
√

2 + 2
1
4

√
2π

E
[
f ′′(N)4

] 1
4 E
[
f ′(N)4

] 1
4 .

Which gives us a better constant than the one claimed by the
proposition. We proved the inequality for f ∈ S. Both size are conti-
nuous with respect to f , for the ∥·∥D2,4 , so we can extend this for all
f ∈ D2,4. Since the right side of the inequality does not depends on
ϕ, we conclude for the inequality. □

In the same way, we can find using the (Pt)t semi-group an estimation of the covariance of two functions of
random Gaussian variables.
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Proposition I.16 : Estimation of a covariance

Let (N, Ñ) a Gaussian couple centered, with N, Ñ ∼ N (0, 1) and let ρ their covariance. Then, for all f, g ∈
D1,2 :

|Cov(f(N), g(Ñ))| ⩽ |ρ| E
[
f ′(N)2] 1

2 E
[
g′(N)2] 1

2

Proof : Here’s the plan. If ρ = 0, N and Ñ are independent and
so are f(N) and g(Ñ), the equality is true. We suppose |ρ| > 0. Let
f, g ∈ S, the inequality will remain true by density.

1. We show the following expression for the covariance :

Cov(f(N), g(Ñ)) = E
[
f(N)

(
P− ln |ρ|g(Ñ)− P∞g(Ñ)

)]

2. We conclude using the usual relations between Pt, D, L, δ.
Let us begin.
1. We go from the right hand side (even if this make the proof

less intuitive). We call it (B). By the interpretation of Pt using the
expectation, we have

(B) = E
[
f(N)g

(
eln |ρ|N +

√
1− e2 ln |ρ|Z

)]
− E[f(N)]E[g(Ñ)],

where Z ∼ N (0, 1) is independent of N . (B) rewrites :

(B) = E
[
f(N)g

(
|ρ|N +

√
1− ρ2Z

)]
− E[f(N)]E[g(Ñ)].

We can compute the characteristic function of what is inside g to
show that

|ρ|N +
√

1− ρ2Z ∼ N (0, 1).
Hence,

(B) = E
[
f(N)g

(
Ñ
)]
− E[f(N)]E[g(Ñ)].

So (B) is the covariance of f(N) and g(Ñ).

2. We write this differences of Pt with an integral. We keep noting
(B) the quantity of 1..

(B) = −E
[
f(N)

ˆ +∞

− ln |ρ|
LPtg(Ñ) dt

]
.

By switching expectation and integral :

(B) = −
ˆ +∞

− ln |ρ|
E
[
f(N)LPtg(Ñ)

]
dt

By the expression L = −δD :

(B) =
ˆ +∞

− ln |ρ|
E
[
f(N)[δDPtg](Ñ)

]
dt

By definition of δ :

(B) =
ˆ +∞

− ln |ρ|
E
[
f ′(N)[DPtg](Ñ)

]
dt

By DPt = e−tPtD :

(B) =
ˆ +∞

− ln |ρ|
e−tE

[
f ′(N)[Ptg′](Ñ)

]
dt

By Cauchy-Schwarz and by contraction property of Pt on L2(γ) :

|(B)| ⩽ E
[
f ′(N)2

] 1
2 E
[
g′(N)2

] 1
2
ˆ +∞

− ln |ρ|
e−t dt

Which is the wanted conclusion. □

I.4.3 Expansion of the heat kernel

Proposition I.17 : Expansion of the heat kernel

For all ε > 0, we consider

∀x ∈ R, pε(x) def.= 1√
2πε

e
−x2

2ε .

Then we have the following expansion of pε in L2(γ) :

pε = 1√
2π(1 + ε)

+∞∑

n=0

(
(−1)n

n!(2n)!2n(1 + ε)n

)
H2n

Proof : We begin by the expansion :

pε =
+∞∑

n=0

(ˆ
R
p

(n)
ε (x) dγ(x)

)
Hn

n!
.

The goal is to compute this integral.
• Let us see first that we have

pε(x) = f

(
x√
ε

)
,

where f(x) = e
−x2

2 . So, we can compute its derivatives thanks
to the Rodrigues formula :

p
(n)
ε (x) = 1√

ε
n (−1)nHn

(
x√
ε

) 1√
2πε

f

(
x√
ε

)
.

Giving :

p
(n)
ε (x) = 1√

ε
n (−1)nHn

(
x√
ε

)
pε(x).

• To compute the integral, we cannot use directly this expression.
The idea is to add a parameter and differentiate it. Here we deal with
the convolution :

g(u) def.=
ˆ

R
pε(x− u) dγ(x).
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Then g is C∞ and we can differentiable under the integration
symbol :

g(n)(u) = (−1)n
ˆ

R
p

(n)
ε (x− u) dγ(x).

So we just need to input u = 0 to have our expression.
• Let us compute explicitly g(u). We have :

g(u) = 1√
2πε

ˆ

R
exp
(
−(x− u)2

2ε

)
exp
(
−x2

2

)
dx√
2π
.

We simply reduce the trinomial in x :
(

1 + 1
ε

)
x2 − 2xu

ε
+ u2

ε

=
u2
ε+1 +

(√
ε+1
ε
x− u√

ε(ε+1)

)2
.

Hence,

g(u)

= 1√
2πε

exp
(
−u2

2(ε+ 1)

)

·
ˆ

R
exp
(−1

2ε

(√
ε+ 1x− u√

ε+ 1

)) dx√
2π
.

We do z =
√
ε+ 1x− u√

ε+1 :

g(u) = 1√
2πε(ε+ 1)

exp
(
−u2

2(ε+ 1)

)
ˆ

R
exp
(
−z2

2ε

)
dz√
2π
.

The integral is equal to √ε, so we finally have :

g(u) = 1√
2π(ε+ 1)

exp
(
−u2

2(ε+ 1)

)
= p1+ε(u).

• Hence, we have :
ˆ

R
p

(n)
ε (x) dγ(x) = (−1)np(n)

1+ε(x).

By the expression we derived of the derivative of pε, we get :
ˆ

R
p

(n)
ε (x) dγ(x) = Hn(0)(√

1 + ε
)n p1+ε(0).

By the expression of Hn(0) we proved for the expansion of the
Hermite polynomials, this integral is zero for n odd. Hence, we have :

pε = 1√
2π(1 + ε)

+∞∑

n=0

(−1)n

(ε+ 1)n2nn!
H2n
(2n)!

.

This shows the expansion. □

II Isonormal Gaussian processes and Wiener chaos
II.1 Isonormal Gaussian processes

Definition II.1
Let (Ω,F ,P) a probability space and H1 a subspace of L2(Ω,F ,P). We say that H1 is a Gaussian subspace
if H1 is closed and contains only zero-mean Gaussian random variables.

Definition II.2
Let (H, ⟨·, ·⟩) a real separable Hilbert space that we set for all this section. We say that a process X =
{X(h), h ∈ H}, indexed by elements of H, is an isonormal Gaussian process if :

i. X is a Gaussian process ;
ii. For all h ∈ H, E[X(h)] = 0 ;
iii. For all h, g ∈ H :

E[X(h)X(g)] = ⟨h, g⟩.

In the following, (Ω,F ,P) is a probability space where F is the σ-algebra generated by (X(h))h∈H.

Proposition II.1 : An isonormal process is linear

Let X an isonormal Gaussian process on H. Then the map
(

H −→ L2(Ω)
h 7−→ X(h)

)

is a linear isometry. As a consequence, its image {X(h), h ∈ H} is closed in L2(Ω), it is a Gaussian subspace,
denoted in the following H1.
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Proof : • To show the linearity, we just need to expand when
λ ∈ R and h, g ∈ H :

E
[
|X(λh+ g)− λX(h)−X(g)|2

]

And we use the equality satisfied by the covariance of X(g) and
X(h). We conclude as a consequence that X(λh+g) = λX(h)+X(g)
on L2.
• The isometry is true by definition. To show that the image is

closed, let us consider a sequence (Yn)n of elements of H1 converging
in L2 to Y ∈ L2, and we show that Y ∈ H1. By definition, it exists
a sequence (hn)n ∈ HN such that Yn = X(hn). Then, the sequence
(Yn)n is a Cauchy sequence. Let n ∈ N and p ∈ N. We have by
isometry :

E
[
|Yn+p − Yn|2

]
= ∥hn+p − hn∥2

so the sequence (hn)n is also a Cauchy sequence in H, so
converges. Let consider Z = X(h). Then

E
[
|Z − Y |2

]
= lim
n→+∞

E
[
|Z − Yn|2

]

By isometry :

E
[
|Z − Y |2

]
= lim
n→+∞

∥hn − h∥2 = 0

so Y = X(h) on L2, so Y ∈ H1. □

Corollary II.1 : Corresponding definition
A process X = (X(h), h ∈ H) is a Gaussian isonormal process if and only if h 7−→ X(h) is linear, and for all
h ∈ H, Xh is Gaussian and E[Xh] = 0.

A little lemma to conclude this part which could be useful for computations in the future.

Lemma II.1 : Independence of a orthogonal family
Let (ei)i∈I an orthogonal family of H. Then (X(ei))i∈I is independent.
Moreover, if (ei)i∈I is an orthonormal family of H, then (X(ei))i∈I is a family of independent and equally
distribued random variables, of law N (0, 1).

Proof of the lemma : By this definition, if (ei)i∈I is an ortho-
normal family of H then (X(ei))i∈I are equally distributed (of law
N (0, 1)) and are two by two independent. But, since (X(h))h∈H is

Gaussian process, this is equivalent to say that the family (X(ei))i∈I
is (mutually) independent and equally distributed. □

II.2 Wiener chaos
Recall that Hp stands for the p-th Hermite polynomial.

Lemma II.2 : Relation between Gaussian variables and Hermite polynomials

Let (X,Y ) a centered Gaussian couple such that E[X2] = E[Y 2] = 1. Then

E [Hn(X)Hm(Y )] =
{

0 if n ̸= m
n!E[XY ]n if n = m.

Proof of the lemma : • By the exponential formula for Hermite
polynomials, we will compute for s, t ∈ R :

E
[
esX− s2

2 etY− t2
2

]
= e

−s2
2 e

−t2
2 E

[
esX+tY

]
.

To compute this expectation, we expend in power series and us
the following fact : if N ∼ N (0, 1) then E[Nk] = 0 if k is odd, and

E
[
N2k

]
= (2k)!

2kk!
.

Since

Var(sX + tY ) = (s+ t)2 + 2st(ρ− 1),

where ρ = E[XY ], we have

E
[
(sX + tY )2k

]
= (2k)!

k!2k

(
(s+ t)2

2
+ st(ρ− 1)

)k
.

We finally have :

E
[
esX− s2

2 etY− t2
2

]

= e
−s2

2 e
−t2

2

+∞∑

k=0

(2k)!
(2k)!k!2k

(
(s+ t)2

2
+ st(ρ− 1)

)k
.

We can rewrite it as :

E
[
esX− s2

2 etY− t2
2

]
= e

−s2
2 e

−t2
2 est(ρ−1)e

(s+t)2
2 .

And finally :

E
[
esX− s2

2 etY− t2
2

]
= estρ.

• To conclude, we use the exponential formula, and we need to
differentiate m times in s, n times in t, and take s = t = 0. The left
hand side becomes after differentiation :
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∂n+m

∂ms∂nt
LHS

=

E

[(+∞∑

p=0

(p+m)!
(p+m)!p!

spHp+m(X)

)

·

(
+∞∑

q=0

(q + n)!
(q + n)!q!

tqHq+n(Y )

)]

Taking s = t = 0 gives :

∂n+m

∂ms∂nt
LHS
∣∣∣∣
s=t=0

= E [Hm(X)Hn(Y )] .

For the right hand side, we use Leibniz formula. Suppose without
loss of generality that m ⩾ n. We have

∂m

∂sm
etsρ = ρmtmetsρ.

Then,

∂m

∂sm
etsρ =

n∑

k=0

(n
k

) m!
(m− k)!

tm−ksn−kρm+n−k.

We take s = 0 first :

∂m

∂sm
etsρ
∣∣∣
s=0

= m!
(m− n)!

tm−nρm.

Taking t = 0 and we have two options : it turns 0 if n ̸= m and
1 if n = m :

∂m

∂sm
etsρ
∣∣∣
t=s=0

= m!ρmδm,n.

Finally, we get :

E[Hn(X)Hm(X)] = m!ρmδm,n.

Which is what we expect. □

Lemma II.3 : Density of the image par Hermite polynomials of isonormal Gaussian process
Let X an isonormal Gaussian process. Then

{Hp(X(h)), p ∈ N, h ∈ H, ∥h∥ = 1}
is dense in Lq, for all q ∈ [1,+∞[.

Proof of the lemma : We try to copy the proof of proposition
I.1. Let q′ the conjugate of q. We consider Z ∈ Lq′ such that for all
p ∈ N, for all h ∈ H with ∥h∥ = 1 :

E [ZHp(X(h))] = 0
Let us prove that Z = 0 on Lq′ . This fact is equivalent to for all

p ∈ N, for all h ∈ H with ∥h∥ = 1 :

E [ZX(h)p] = 0
We use the Fourier transform. By Holder inequality, we can justify

with Fubini theorem that we have for all u ∈ R :

E
[
ZeiuX(h)

]
= 0

Since H is real and separable, the Hilbert theory implies that H
admits a countable orthonormal basis. We denote it by (ei)i :

H =
⊥⊕

i∈N∗

Rei.

We note also Fm the σ-algebra generated by
(X(e1), · · · , X(em)). Let us show that

∀m ∈ N∗,E[Z|Fm] = 0.
We have for all λ1, · · · , λm ∈ R :

E

[
Z exp

(
i
n∑

j=1

λjX(ej)

)]
= 0.

Since the exponential is Fm-measurable, this means that :

E

[
E[Z|Fm] exp

(
i
n∑

j=1

λjX(ej)

)]
= 0.

Moreover, by Fm-measurability of E[Z|Fm], there exists a func-
tion φ : Rm −→ R measurable such that

E[Z|Fm] = φ(X(e1), · · · , X(em)).
Hence, the equality gives that for all λ1, · · · , λm ∈ R :

ˆ

Rm
φ(x1, · · · , xm)e

−1
2

∑m

j=1
x2
j e

i
∑m

j=1
λjxj = 0.

We used the fact that E[X(ei)X(ej)] = δi,j . This equality implies
that the Fourier transform of

(x1, · · · , xm) 7−→ φ(x1, · · · , xm)e
−1
2

∑m

j=1
x2
j

is the null function. By injectivity, it means that φ is the null
function, and so that

∀m ∈ N∗,E[Z|Fm] = 0.
This means that

E[Z|F ] = 0

But since Z is F-measurable, we conclude that Z = 0 in Lq
′ .

Hence, by the lemma I.1., the family generated by Hp(X(h)) is dense
in Lq . □

Theorem II.1 : Wiener-Itô decomposition
Let X an isonormal Gaussian process on an real separable Hilbert space H. For all n ∈ N, we note

Hn
def.= Vect {Hn(X(h)), h ∈ H, ∥h∥ = 1}

the n-th chaos of Wiener. Then, we have the following decomposition :
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L2(Ω,F ,P) =
⊥⊕

n∈N
Hn.

Proof : • Let us show first that (Hm)m are an orthogonal family.
Let n ̸= m and F ∈ H0

m ∩ H0
n, where

H0
p = Vect

{
Hn(X(h)), h ∈ H, ∥h∥ = 1

}
.

Then F admits two expansions of the form
∑

i
αiHn(hi) and∑

j
βjHm(hj). Hence, it suffices to show that for every h, g ∈ H :

E[Hn(X(h))Hm(X(g))] = 0

And this property is true by lemma II.2. Hence, the H0
n are in

direct sums, and by closure, the spaces Hn are in direct sums..
• We will show the density of G

def.=
⊕⊥

n∈N Hn. Let Z ∈ G⊥.
Then for all h ∈ H with ∥h∥ = 1 and for all n ∈ N :

E[ZHn(X(h))] = 0.

By lemma II.3, the set of all Hn(X(h)) is dense in L2. It means
that Z = 0. This proves our theorem,. □

As a consequence, we can decompose all L2 random variables in terms of Hn.

Definition II.3
Let Z a random variable belonging to L2. We note Jn(Z) the projection of Z over Hn. In other words, we
note in L2 :

Z =
+∞∑

n=0
Jn(Z) =

+∞∑

n=0
Proj (Z |Hn ) .

It could be interesting to have a basis of each space Hn to have a global basis of L2 where we can decompose
each Jn(Z). We can do it thanks to the Hermite polynomials once again. Before going to it, let us introduce a few
notations on multi-indexes.

Definition II.4
We define Λ as set of the sequences taking values into N almost null :

Λ def.=
{
a ∈ NN∣∣∃n0 ∈ N,∀n ⩾ n0, an = 0

}
.

For a ∈ Λ, we define the length of a and the factorial of a by :

|a| def.=
+∞∑

i=1
ai and a! def.=

+∞∏

i=1
ai!

We note Λn the set of elements of Λ with length n.

Those two objects are well-defined since there is a finite number of non null elements for a.
The following proposition generalizes the proposition I.10 about an Hilbert basis of L2(γ) thanks to the Hermite

polynomials.

Proposition II.2 : A basis of Hn

Let (ei)i⩾1 an orthonormal basis of H. For all a ∈ Λ, we define

Φa
def.= 1√

a!

+∞∏

i=1
Hai(X(ei)).

Then the set
⋃

k∈J1,nK{Φa, a ∈ Λn} is an orthonormal basis (in the hilbertian sense) of ⊕n
k=1Hk.

Proof : • Let a, b ∈ Λ. We show that E[ΦaΦb] = 0 when a ̸= b.
To do that, we use the independence of (X(ei))i we discussed at
the end of the subsection about isonormal Gaussian processes, in the
lemma II.1. We have : E[ΦaΦb] = 1√

a!
√
b!

+∞∏

i=1

E
[
Hai (X(ei))Hbi (X(ei))

]
.
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By the lemma II.1,

E
[
Hai (X(ei))Hbi (X(ei))

]
= ai!δai,bi

And so :

E[ΦaΦb] = δa,b.

Hence, (Φa)a∈Λ is an orthogonal family of L2(P).

• For the density, just think that if a ∈ Λn, Φa is a multivariate
polynomial with degree n, so can be express as linear combination of
Hermite polynomials. By definition, the set of Hermite polynomials up
to degree n taken in element of H with norm 1 is dense into ⊕np=1Hp.
It follows that (Φa)a∈Λn is itself dense into ⊕np=1Hp. □

Corollary II.2 : A basis of L2

With the same notations as the previous proposition. The family {Φa, a ∈ Λ} is an orthonormal basis of
L2(Ω,F ,P).

Recall that F is here the σ-algebra generated by the X(h), with h ∈ H.

II.3 Construction of Itô-Wiener multiple integrals
We take place in H = L2(T,B, µ), where µ contains no atoms and is σ-finite. In this case, H is indeed a real

separable Hilbert space. We will precise Jn(Z) in this case thanks to multiple Itô-Wiener integrals. We will denote
H sometimes by L2(µ), and L2(P) will refer to the square integrable random variables.

Lemma II.4 : Gaussian measure
Let X an isonormal process on L2(µ). Then if we define

∀A ∈ B,W (A) def.= X (1A) ,

then W is a Gaussian measure on (T,B, µ), meaning that W : B −→ L2(P) satisfies :
(i) W (∅) = 0 ;
(ii) If (An)n ∈ BN are disjoints, and satisfies

∑
n µ(An) < +∞ then

W

(⊔

n∈N
An

)
=

+∞∑

n=1
W (An)

in L2(P) ;
(iii) If µ(A) < +∞ then W (A) ∼ N (0, µ(A)).

We set those notations for the rest of this subsection.
To define multiples integral, we define it first on a simple set, which we will be dense in L2(µ⊗m). We set m ⩾ 1

for the rest of this section.

Definition II.5
Let f ∈ L2 (Tm,B⊗m, µ⊗m). We say that f is an elementary function if there exists N ∈ N such that for all
t1, · · · , tm ∈ T :

f(t1, · · · , tm) =
N∑

i1,··· ,im=1
ai1,··· ,im1Ai1 ×···×Aim

(t1, · · · , tm),

where :
(i) ai1,··· ,im ∈ R are coefficients, with indexes ij ∈ J1, NK, such that they are equal to zero if there is two

equal indexes ;
(ii) Ai1 , · · · , Aim ∈ B are two by two disjoint sets with µ (Ai) < +∞, for all i ∈ {im}m.

We note Em the set of all elementary functions with m variables. In this case, we note its Itô-Wiener integral :

Im(f) =
ˆ

Tm
f(t1, · · · , tm) dWt1 · · · dWtm
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defined by :

Im(f) def.=
N∑

i1,··· ,im=1
ai1,··· ,imW (Ai1) · · ·W (Aim).

Proposition II.3 : Properties of integrals on elementary functions

Let f ∈ Em, defined by the equality of the previous definition.
(i) The definition of Im(f) does not depend on the representation of f ;
(ii) Im : Em −→ L2(P) is linear ;
(iii) If we note, for all t1, · · · , tm ∈ T :

f̃(t1, · · · , tm) def.= 1
m!

∑

σ∈Sn

f
(
tσ(1), · · · , tσ(m)

)

the symmetrization of f , then Im(f) = Im(f̃) ;
(iv) If g ∈ Eq, then

E [Im(f)Iq(g)] = m!⟨f̃ , g̃⟩L2(Tm)δm,q.

Proof : (i) If f admits two representations

f(t1, · · · , tm)
=

∑N

i1,··· ,im=1 ai1,··· ,im1Ai1 ×···Aim (t1, · · · , tm)
=

∑M

j1,··· ,jm=1 bj1,··· ,jm1Bj1 ×···Bjm (t1, · · · , tm)

then we can consider its decomposition on Cϕ(i,j) = Ai ∩ Bj ,
where ϕ is bijection between J1, NK× J1,MK to J1,MNK. Those sets
can be indeed used since the Cϕ(i,j) are two by two disjoints and
Cϕ(i,j) is µ-finite. We note ck1,··· ,km the values of the coefficient,
with kp = ϕ(ip, jp) :

ck1,··· ,km = ai1,··· ,im = bj1,··· ,jm .

In this case, if we note IAm the integral with the A representation,
same with IBm and ICm, we have

ICm(f) =
MN∑

k1,··· ,km=1

ck1,··· ,kmW (Ck1 ) · · ·W (Ckm ).

With the help of ϕ, it means that :

ICm(f) =
∑N

i1,··· ,im=1

(∑M

j1,··· ,jm=1 cϕ(i1,j1),··· ,ϕ(im,jm)

·W (Ai1 ∩Bj1 ) · · ·W (Aim ∩Bjm )
)
.

By definition of the coefficients c, we obtain :

ICm(f) =
∑N

i1,··· ,im=1 ai1,··· ,im

(∑M

j1,··· ,jm=1

·W (Ai1 ∩Bj1 ) · · ·W (Aim ∩Bjm )
)
.

The last sums decouples :

ICm(f) =
∑N

i1,··· ,im=1 ai1,··· ,im

·
(∏m

k=1
∑M

j=1 W (Aik ∩Bj)
)
.

By additivity of W , since the Bj ’s are disjoints :

ICm(f) =
∑N

i1,··· ,im=1 ai1,··· ,im

·
(∏m

k=1 W
(
Aik ∩

⊔M

j=1 Bj

))
.

And since f is reprenseted by Ai and the Bj , we have µ-almost
everywhere

M⊔

j=1

Bj =
N⊔

i=1

Ai.

Finally, we have :

ICm(f) =
N∑

i1,··· ,im=1

ai1,··· ,imW (Ai1 ) · · ·W (Aim ).

So good as ICm(f) = IAm(f). By symmetry of the computation,
ICm(f) = IBm(f). This shows that Im(f) is well-defined.

(ii) Let f, g ∈ Em. We can suppose that f, g admits a decom-
position on the same sets of B, if not, we just have to consider their
intersection. Then, in this case, the linearity just comes from the li-
nearity of the sum.

(iii) By linearity of f 7−→ f̃ , we just need to consider the case
where f is a product of indicative functions :

f(t1, · · · , tm) = 1A1×···Am (t1, · · · , tm).
Then, by linearity of Im :

Im(f̃) = 1
m!

∑

σ∈Sn

Im(f).

Since the inside of the sum does not depends on σ, we finally have
Im(f̃) = Im(f).

(iv) By (iii), we just need to consider the case where f, g are
symmetric. We can consider that f, g are associated with the same
partition A1, · · · , An. It means that

f =
n∑

i1,··· ,im=1

ai1,··· ,im1Ai1 · · ·1Aim
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and

g =
n∑

j1,··· ,jq=1

bj1,··· ,jq1Aj1
· · ·1Ajq .

Moreover, the symmetry implies that for all permutation σ, the
coefficients indeed by ik and by iσ(k) are the same. It implies that

Im(f) = m!
∑

1⩽i1<···<im⩽n
ai1,··· ,imW (Ai1 ) · · ·W (Aim )

Same thing for g. Hence, we can compute E [Im(f)Iq(g)] :

E [Im(f)Iq(g)]
= m!q!

∑
i∈I
∑

j∈J aibjE
[∏m

k=1
∏q

l=1 W (Aik )W (Ajl )
]

where I is the ranged set of {ik} and J the ranged set of {jl}.
If we suppose that m > q, then there exists ik0 such that ik is not
equal to any jl. By orthogonality of the 1Aj for L2(µ), we use the
independence of the W (Aj) to obtain that

E

[
m∏

k=1

q∏

l=1

W (Aik )W (Ajl )

]

= E




m∏

k=1
k ̸=k0

q∏

l=1

W (Aik )W (Ajl )


E[W (Aik0

)]

= 0

We got the result for m ̸= q. If m = q, then we will show that
the sum in j is null except if the sequence {jl} is exactly {ik}. If we
suppose that there exists k0 such that for all k, ik ̸= jk0 than the
expectation goes to zero by independence. It remains all the terms
such that : for all k, there exists n(k) such that ik = jn(k). But, since
the sequence {ik} is strictly increasing, k 7−→ n(k) is also strictly
increasing. But, the only strictly increasing function from J1,mK to
itself is the identity. Hence, ik = jk for all k, and then

E [Im(f)Im(g)]
= (m!)2∑

i1<···<im ai1,··· ,imbi1,··· ,imE
[∏m

k=1 W (Aik )2
]
.

This yields to

E [Im(f)Im(g)]
= (m!)2∑

i1<···<im ai1,··· ,imbi1,··· ,imµ(Ai1 ) · · ·µ(Aim ).

So, if we write it for every indexes :

E [Im(f)Im(g)]
= m!

∑n

i1,··· ,im=1 ai1,··· ,imbi1,··· ,imµ(Ai1 ) · · ·µ(Aim ).

And by definition of the integral for µ⊗m :

E [Im(f)Im(g)] = m!⟨f, g⟩L2(Tm).

□

Proposition II.4 : Density of elementary functions

The space Em is dense in L2(Tm,B⊗m, µ⊗).

Proof : • We suppose known the fact that

Vect (1A1···Am , Ai ∈ B, µ(Ai) < +∞)
is dense in L2(µ⊗m). To complete the proof, we consequently

show that every function of the form 1A1···Am can be approximated
by elements from Em.
• Let A = A1 · · ·Am, with every Ai ∈ B satisfying µ(Ai) < +∞.

We note

α
def.= µ

(
m⋃

i=1

Ai

)
.

Let ε > 0. Let us show that there exists f ∈ Em such that

∥1A − f∥L2(µ⊗m) ⩽ ε.

Since µ contains no atoms, there exists B1, · · · , Bn ∈ B such
that

µ(Bi) ⩽ ε(
m
2

)
αm−1

,

and such that for all i ∈ J1,mK, the set Ai is partitioned by some
Bi. Hence, we write the indicator function of A can be written as :

1A =
∑

(i1,··· ,im)∈J1,nKm
εi1,··· ,im1Bi1 ×···×Bim ,

with every ε belonging to {0, 1}. With this decomposition, we can
define

f
def.=

∑

(i1,··· ,im)∈∆

εi1,··· ,im1Bi1 ×···×Bim

where ∆ is the set of the indexes (i1, · · · , im) containing only
different entries :

∆ def.= {(i1, · · · , im) ∈ J1, nKm, ∀k ̸= l, ik ̸= il} .
• We note J its complementary. We have on L2(µ⊗) :

∥1A − f∥2
L2 =

∥∥∥∥∥∥
∑

(i1,··· ,im)∈J

εi1,··· ,im1Bi1 ×···×Bim

∥∥∥∥∥∥

2

L2

By integration of stair functions :

∥1A − f∥2
L2 =

∑

(i1,··· ,im)∈J

ε2
i1,··· ,imµ(Bi1 ) · · ·µ(Bim ).

All the ε are lower or equal to 1.

∥1A − f∥2
L2 ⩽

∑

(i1,··· ,im)∈J

µ(Bi1 ) · · ·µ(Bim ).

By definition,

J = {(i1, · · · , im) ∈ J1, nKm, ∃k ̸= l, ik = il} .
Hence, we can make a partition of J in function of the values

taken by the equal indexes :

J =
m⊔

i=1

{(i1, · · · , im) ∈ J1, nKm, ∃k ̸= l, ik = il = i} .

We note Ji the set inside the union. We get until now :

∥1A − f∥2
L2 ⩽

m∑

i=1

∑

(i1,··· ,im)∈Ji

µ(Bi1 ) · · ·µ(Bim ).
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• Let (i1, · · · , im) ∈ Ji. Then, there are k ̸= l such that
il = ik = i. We have the following estimation, by majoring the unk-
nown measure by the sum of all measures :

m∏

σ=1

µ (Biσ ) ⩽ µ(Bi)2

(
m∑

j=1

µ(Bj)

)m−2

.

Since (Bj)j is a partition of A, we have :

m∏

σ=1

µ (Biσ ) ⩽ µ(Bi)2αm−2.

And since everything is positive, if we estimate one of the two
factors in µ(Bi)2, we got :

m∏

σ=1

µ (Biσ ) ⩽ ε

α
(
m
2

)µ(Bi).

• So, the estimation of the reminder yields to :

∥1A − f∥2
L2 ⩽ ε

α
(
m
2

)
m∑

i=1

µ(Bi)♯Ji.

Since ♯Ji =
(
m
2

)
, we get :

∥1A − f∥2
L2 ⩽ ε

α

m∑

i=1

µ(Bi) = ε.

That shows how the space Em is dense in L2(Tm). □

By this density, we can conclude the properties of Im on every L2 function.

Proposition II.5 : Properties of Itô-Wiener integrals on L2 functions

Let f ∈ L2(Tm).
(i) Im : L2(Tm) −→ L2(P) is a linear continuous map ;
(ii) If f̃ is the symmetrization of f , then Im(f) = Im(f̃) ;
(iii) If g ∈ L2(T q), then

E [Im(f)Iq(g)] = m!⟨f̃ , g̃⟩L2(Tm)δm,q.

Proof : All those properties comes from the continuity of Im. Its
continuity can be shown by taking f = g in (iv) of the proposition
II.3, for all f ∈ Em :

E
[
Im(f)2

]
= m!

∥∥f̃
∥∥2
L2(Tm)

We obtain :

E
[
Im(f)2

]
⩽ m!∥f∥2

L2(Tm)

Hence, Im is continuous linear on a dense subset of the Hilbert
space L2(Tm). □

Corollary II.3 : Interpretation of an isonormal process in terms of Itô-Wiener integral

Let h ∈ L2(T ). Then,

X(h) =
ˆ

T

h(t) dWt.

Proof : The equality is true for every h ∈ E1, by definition of W :

X(1A) = W (A) =
ˆ

T
1A(t) dWt.

h 7−→ X(h) is continuous, I1 is also continuous. We conclude in
the equality for every h ∈ L2(T ).

□

As an example, let us consider the case where µ is the product measure product between the Lebesgue measure
on R+ and the count measure on J1, dK, if we set on H = L2(R+ × J1, dK, µ), embedded with the inner product :

⟨f, g⟩ =
d∑

i=1

ˆ +∞

0
f(i, t)g(i, t) dt.

Then, if

Bi(t) = W ([0, t] × {i})
then Bi ∼ N (0, t) (since µ([0, t] × {i}) = t). If i ̸= j, E[Bi(t)Bj(t)] = 0. If s ⩽ t :

E
[
Bi(t)Bi(s)

]
=
ˆ +∞

0
1[0,t](u)1[0,s](u) du = s.

We get the Brownian motion in dimension d.
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II.4 Decomposition of square integrable random variables with multiple integrals
We will prove the following theorem in this section.

Theorem II.2 : Decomposition in Wiener chaos

Let X an isonormal Gaussian process on L2(T,B, µ). Let F ∈ L2(Ω,F ,P). Then, there exists an unique
sequence of symmetric elements fn ∈ L2(Tn,B⊗n, µ⊗n) such that in L2 :

F =
+∞∑

n=0
In(fn),

with In(fn) ∈ Hn. In other words,

∀n ∈ N∗, In(fn) = Jn(F ).

We will give later an expression of the fn with the Malliavin derivatives.
We prove now a relation which is close to the relation satisfied by the Hermite polynomials.

Lemma II.5 : A recurrent relation for Ip

Let f ∈ L2(T p) and g ∈ L2(T ). Then if we note for all (t1, · · · , tp−1) ∈ T p−1 :

[f ⊗1 g](t1, · · · , tp−1) def.=
ˆ

T

f(t1, · · · , tp−1, s)g(s) dµ(s),

then Ip satisfies the following relation :

Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g).

Proof of the lemma : By density of elementary functions, and by
linearity of Ip, let us consider f as a symmetrization of an indicator
function :

f = 1
p!

∑

σ∈Sp

1Aσ(1)×···×Aσ(p)

where Ai are two by two disjoints, and µ(Ai) < +∞. For g, by
density of elementary function and by linearity of I1, we only have two
cases to check : if g = 1A1 , or if g = 1A0 , with A0 disjoint of the Ai.
• The easier case is when g = 1A0 . Indeed, we can compute all

the quantities which are in the lemme. First,

Ip(f)I1(g) = W (A1) · · ·W (Ap)W (A0).
Then,

f ⊗1 g(t1, . . . , tp−1) =
ˆ

T
f(t1, . . . , tp−1, s)g(s) dµ(s),

and so f ⊗1 g = 0. Finally,

f ⊗ g = 1
p!

∑

σ∈Sp

1Aσ(1)×···×Aσ(p)×A0 .

And so

Ip+1(f ⊗ g) = W (A0)W (A1) . . .W (Ap).
We have shown the equality.
• Let us consider g = 1A1 . Here’s the plan.
1. Ip−1(f ⊗1 g) is still easy to compute.
2. Let ε > 0. Since µ is non-atomic, we consider a partition of A1

whose elements have measure less than ε
6β , where β =

∏p

k=1 µ(Ak).
We note this partition (B1, · · · , Bn). We introduce the function

hε =
∑

i ̸=j

1Bi×Bj×A2×···×Ap .

Then hε ∈ Ep+1 satisfies

E
[
|Ip+1(hε)− Ip+1(f ⊗ g)|2

]
⩽ ε

6
.

3. We also have

Ip(f)I1(g) = Ip+1(hε) +Rε + pIp−1(f ⊗1 g).
Then,

E
[
R2
ε

]
⩽ ε

3
.

4. We can conclude on our equality.
Let’s prove it.
1. Let us call for t1, · · · , tp−1 ∈ T :

(A) def.= f ⊗1 g(t1, · · · , tp−1).
Then, by definition :

(A) = 1
p!

∑

σ∈Sp

(ˆ
T

1Aσ(p)∩A1 (s) dµ(s)
)

·1Aσ(1)×···×Aσ(p−1) (t1, · · · , tp−1).
The integral is equal to zero except if σ(p) = 1, where it is equal

to µ(A1). By changing variables, we get :

(A) = µ(A1)
p!

∑

σ∈S(J2,pK)

1Aσ(2)×···×Aσ(p) (t1, · · · , tp−1).

We found the symmetrization of an indicator function :

(A) = µ(A1)
p

1̃A2×···×Ap .

Hence, we can compute Ip−1(f ⊗1 g) :

Ip−1(f ⊗1 g) = µ(A1)
p

W (A2) · · ·W (Ap).

2. By the proposition II.5, the relation (iii) gives :
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E
[
|Ip+1(hε)− Ip+1(f ⊗ g)|2

]
=
∥∥∥h̃ε − f̃ ⊗ g

∥∥∥
2

L2(Tm+1)
.

Let’s call it (B). Then, by property of symmetrization :

(B) =
∥∥h̃ε − 1̃A1×A1×A2×···×Ap

∥∥2
L2(Tm+1)

.

By triangular inequality, we remove the tildes :

(B) ⩽
∥∥hε − 1A1×A1×A2×···×Ap

∥∥2
L2(Tm+1)

.

We compute the right hand side. We have :

(B) ⩽ µ(A2) · · ·µ(Ap)

·
ˆ

T2

[∑

i ̸=j

1Bi×Bj (t, s)− 1A1×A1 (t, s)

]2

dµ(t)dµ(s).

The sum can be easier expressed :

(B) ⩽ µ(A2) · · ·µ(Ap)

·
ˆ

T2

[
n∑

i=1

1Bi×Bi (t, s)

]2

dµ(t)dµ(s).

Since the sums is over indicators with disjoints support :

(B) ⩽ µ(A2) · · ·µ(Ap)

·
ˆ

T2

[
n∑

i=1

1Bi (t)1Bi (s)

]
dµ(t)dµ(s).

We have finally :

(B) ⩽

(
n∑

i=1

µ(Bi)

)2

µ(A2) · · ·µ(Ap).

In terms of ε, and using the fact that (Bi)i is partition of A1, we
have :

(B) ⩽ εβ

6
.

3. ▷ Let us give an expression on Rε thanks to the two first points.
To do this, we expend Ip(f)I1(g), and we artificially appear the term
Ip+1(hε). We have :

W (A1)2W (A2) · · ·W (Ap).
With the partition (Bi)i, we have by expanding the square of the

sum :

Ip(f)I1(g) =
∑

i ̸=j

W (Bi)W (Bj)W (A2) . . .W (Ap)

+
n∑

i=1

W (Bi)2W (A2) · · ·W (Ap).

We have Ip+1(hε) in the first term. We introduce µ(A1) by in-
troducing µ(Bi) in the second sum :

Ip(f)I1(g) = Ip+1(hε)

+
n∑

i=1

µ(Bi)W (A2) · · ·W (Ap)

+
n∑

i=1

(
W (Bi)2 − µ(Bi)

)
W (A2) · · ·W (Ap).

Since
∑

i
µ(Bi) = µ(A1), we get hat we computed in 1. :

Ip(f)I1(g) = Ip+1(hε) + Ip−1(f ⊗1 g)

+
n∑

i=1

(
W (Bi)2 − µ(Bi)

)
W (A2) · · ·W (Ap).

We call Rε the last term :

Rε
def.=

n∑

i=1

(
W (Bi)2 − µ(Bi)

)
W (A2) · · ·W (Ap).

▷ We have by independence of (W (Bi))i :

E
[
R2
ε

]
= E

[(
n∑

i=1

(
W (Bi)2 − µ(Bi)

)
)2]

µ(A2) · · ·µ(Ap).

Let’s call the expectation term (C). We expend the square :

(C) =
n∑

i,j=1

E
[(
W (Bi)2 − µ(Bi)

) (
W (Bj)2 − µ(Bj)

)]
.

Since µ(Bi) is the variance of W (Bi), and by independence, the
sum in j is null except if j = i :

(C) =
n∑

i=1

E
[(
W (Bi)2 − µ(Bi)

)2
]
.

We just need to expend the square, and use the fact that
E[N4] = 3 when N ∼ N (0, 1) to obtain that :

(C) = 2
n∑

i=1

µ(Bi)2.

Finally, since (B1, · · · , Bn) is a partition of A1, we get :

E
[
R2
ε

]
⩽ 2εβ

6
4. We can finally conclude in our equality. Let us show that the

square of the difference has a null expectation. Let us call

(D) def.= E
[
|Ip(f)I1(g)− Ip+1(f ⊗ g)− pIp−1(f ⊗1 g)|2

]
.

By using the relation 3., and by convexity of the square, we have :

(D) ⩽ 2E
[
R2
ε

]
+ 2E

[
Ip+1(hε − f ⊗ g)2

]
.

By 2. and 3., we get :

(D) ⩽ 2ε
3

+ 2ε
6

= ε.

We show this inequality for all ε > 0. This means we have finally
the wanted equality. □

The main consequence is the following.
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Proposition II.6 : Hermite polynomial and Itô-Wiener integral

Let h ∈ L2(T ) with norm 1. Then,

∀m ∈ N∗, Im

(
h⊗m

)
= Hm(X(h)).

Proof : We prove it by induction on m. For m = 1, this the
corollary II.3 we have proven. Let us suppose this property true for
every integer lower or equal to m. We use the previous lemma.

Im+1
(
h⊗(m+1)

)
= Im(h⊗m)I1(h)−mIm−1

(
h⊗m ⊗1 h

)
.

We have I1(h) = X(h), and Im(h) = Hm(X(h)) by induction
hypothesis. We compute h⊗m ⊗1 h :

h⊗m ⊗1 h(t1, · · · , tm−1) =
ˆ

T
h(t1) · · ·h(tm−1)h(u)2 dµ(u).

Which gives :

h⊗m ⊗1 h(t1, · · · , tm−1) = hm−1(t1, · · · , tm−1)∥h∥2
L2(µ).

And ∥h∥L2(µ) = 1. Finally, we have

Im+1
(
h⊗(m+1)

)
= X(h)Hm(X(h))−mHm−1(X(h)).

By the relation (i) satisfied by the Hermite polynomials, the in-
duction is complete. □

Corollary II.4 : Wiener chaos seen as an image of the Itô-Wiener integral

We note L2
S(Tm) the set of symmetric functions of L2(Tm). Then, the map

Im
∣∣∣L2

S

: L2
S(Tm) −→ Hm

is an isomorphism.

Proof : By the previous proposition,

{Hm(X(h)), ∥h∥ = 1} ⊂ Im(L2
S(Tm)).

Moreover, if f ∈ L2
S(Tm), we have

E
[
Im(f)2

]
= m!∥f∥2

L2(µ).

So Im(L2
S(Tm)) is closed in L2(P), and by taking the closure, we

have the inclusion :

Hm ⊂ Im(L2
S(Tm)).

Moreover, this equality shows that Im reduced to L2
S is injective.

To conclude, we just have to show the other inclusion. Let h ∈ L2(T )
with ∥h∥ = 1. Then for all n ̸= m and g ∈ L2

S(Tm), by (iii) in
proposition II.5 :

⟨Hn(X(h)), Im(g)⟩ = ⟨In(h⊗n), Im(g)⟩ = 0.
Hence, for all n ̸= m :

{Hn(X(h)), ∥h∥ = 1} ⊂ Im(L2
S(Tm))⊥

So, by taking the closure :

Hn ⊂ Im(L2
S(Tm))⊥

So :

Im(L2
S(Tm)) ⊂

⊥⊕

n̸=m

Hn = Hm.

This concludes the surjectivity of this map. □

This corollary concludes the proof of the theorem, since L2(P) is the direct sum of the Wiener chaos Hm.
Remark : By symmetry of the (fn)n, we have the following expression for In(fn) :

In(fn) = n!
ˆ +∞

0

ˆ tn

0
· · ·
ˆ t2

0
fn(t1, · · · , tn) dWt1 · · · dWtn .

II.5 Decomposition in Wiener chaos for variables with values in Hilbert space
We want to generalize the previous theorem, and we do it using it. We still set X an isonormal process on

(Ω,F ,P) where F is the σ-algebra generated by X. We begin by defining what is a Wiener chaos for a random
variable with values in V.

Definition II.6
Let V a real separable Hilbert space. Then, we define the n-th Wiener chaos in V by :

Hn(V) def.= Vect(Fv, F ∈ Hn, v ∈ V).

Then, we have the following theorem :
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Theorem II.3 : Decomposition in Wiener chaos for a Hilbert
Let V a real-separable Hilbert space. Then :

L2(Ω → V) =
⊥⊕

n∈N
Hn(V).

for the norm :

∀U ∈ L2(Ω → V), ∥U∥2
L2(Ω→V)

def.= E
[
∥U∥2

V

]

Proof : Each space Hn(V) are orthogonal since the space Hn are
too. We decompose V with a Hilbert basis :

V =
⊥⊕

i∈N

Rvi.

Let U ∈ L2(Ω→ V). We can decompose it in L2 by :

U =
∑

i∈N

⟨U, vi⟩vi.

But, since

E
[
∥U∥2

V
]

=
∑

i∈N

E
[
⟨U, vi⟩2

]
,

we have ⟨U, vi⟩ ∈ L2(P), and so it can be decomposed by Wiener-
Itô decomposition we proves previously :

⟨U, vi⟩ =
∑

n∈N

In(uin).

As a consequence, by Fubini theorem, since both series converging
absolutely in L2(Ω→ V) :

U =
∑

n∈N

(∑

i∈N

In(uin)vi

)
∈

⊥⊕

n∈N

Hn(V).

This concludes the theorem. □

We still note Jn the projection of n-th Wiener chaos (we don’t precise that Jn takes V-valued random variables).
Set H = L2(T,B, µ), with µ a non-atomic measure. We can still construct Wiener integral on Hilbert space, and

leading to this theorem. We introduce for that the tensor product between two Hilbert spaces.

Theorem II.4 : Isometry between Wiener chaos and symmetric functions
Let V a real separable Hilbert space, and n ∈ N∗. There exists a map

IV
n : L2

S(Tn) −→ Hn

such that for all m, q ∈ N∗, f ∈ L2
S(Tm) ⊗ V and g ∈ L2

S(T q) ⊗ V :

E
[〈
IV

m(f), IV
q (g)

〉
V

]
= m!⟨f, g⟩L2(Tm)⊗V δm,q.

Hence, for all all U ∈ L2(Ω → V), there exists an unique sequence (un)n ∈ L2
S(Tm) ⊗ V such that

Jn(U) = IV
n (un).

Proof : We define for f ∈ L2(Tm) and v ∈ V :

IV
m(f ⊗ v) def.= Im(f)v ∈ Hm(V ).

We extend it by linearity on the span of f ⊗ v, for f ∈ L2(Tm),
v ∈ V. Set f ∈ L2

S(Tm), g ∈ L2
S(T q) symmetric, v, w ∈ V. Then,

E
[〈
IV
m(f ⊗ v), IV

q (g ⊗ w)
〉

V

]
= ⟨v, w⟩VE[Im(f)Iq(g)].

By the isometry equality of the previous subsection, we have

E
[〈
IV
m(f ⊗ v), IV

q (g ⊗ w)
〉

V

]
= m!⟨v, w⟩V ⟨f, g⟩L2δq,m.

It yields to our result by the definition of the scalar product on
L2(T )⊗ V. □

III The derivative operator
III.1 Definition in a general Hilbert space

Like in the one-dimensional case, we will introduce the derivative of a random variable in Lq, first on simple
elements and then by density on more general random variables. The idea of this derivative is to differentiate with
respect to ω, the random parameter.
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In the following, we consider an isonormal Gaussian process X = {X(h), h ∈ H}, on a real separable Hilbert
space H, defined on (Ω,F ,P), where F est generated by X.

Definition III.1
Let F a real random variable. We say that F is smooth if there exists n ∈ N∗ and :

(i) f ∈ C∞
pol(Rn), that is :

∃C ⩾ 0,∃k ∈ N,∀l ∈ N,∀(i1, · · · , il) ∈ J1, nKl,∀x ∈ Rn,

∣∣∣∣
∂lf

∂xi1 · · · ∂xil

(x)
∣∣∣∣ ⩽ C|x|k;

(ii) h1, · · · , hn ∈ H ;
such that

F = f(X(h1), · · · , X(hn)).

We note S the set of all smooth random variables.

Lemma III.1 : Density of smooth functions
The set S is dense into Lq(R) for the usual norm, for every finite q ∈ [1,+∞[.

Proof of the lemma : This a consequence of the fact that S
contains all the Hp(X(h)), with h ∈ H with norm 1. Since the set of

those type of functions id dense by the lemma II.3, the set S is also
dense in Lq(R). □

Definition III.2
Let F ∈ S, given by the definition III.1. We call the Malliavin derivative of F , denoted by DF , the H-valued
random variable given by :

DF def.=
n∑

i=1

∂f

∂xi
(X(h1), · · · , X(hn))hi.

In particular, for all h ∈ H :

D(X(h)) = h.

This operator depends on the choice of the orthonormal Gaussian process X.
Here’s a first property which justifies the choice to define the Malliavin derivative.

Lemma III.2 : Anti derivative in H
Let F ∈ S. Then, for all h ∈ H :

E [⟨DF, h⟩H] = E[FX(h)].

Proof of the lemma : The result is true for h = 0. Else, we can
consider that ∥h∥ = 1. Since F is smooth, there exist h1, · · · , hm ∈ H
such that

F = f1(W (h),W (h1), · · · ,W (hn))
with f1 ∈ C∞

pol(R
n). However, there exists an orthonormal basis

(e1, · · · , en) of Vect(h, h1, · · · , hn) with h = e1. By changing basis,
and by linearity of W , we can suppose that

F = f(W (h),W (e2), · · · ,W (en)).
Hence, we can conclude that

⟨DF, h⟩H = ∂f

∂x1
(X(h), X(e2), · · · , X(hn))

Computing the expectation of this is now an easy game. If we
note for x = (x1, · · · , xn) ∈ Rn :

ϕ(x) def.= exp

(
−1
2

n∑

j=1

x2
j

)
1(√
2π
)n ,

then,

E [⟨DF, h⟩H] =
ˆ

Rn
∂f

∂x1
(x)ϕ(x) dx.

We integrate by parts with respect to x1 :

E [⟨DF, h⟩H] =
ˆ

Rn
f(x)x1ϕ(x) dx.
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We finally get :

E [⟨DF, h⟩H] = E [f(X(e1), · · · , X(en))X(e1)] .
In terms of h and F , it means that :

E [⟨DF, h⟩H] = E [FX(h)] .

That is the wanted formula. □

Thanks to this lemma, we can derive an integration by parts formula.

Lemma III.3 : Integration by parts 2
Let F,G smooth random variables, and h ∈ H. Then,

E [G⟨DF, h⟩H] = E[FG ·X(h)] − E [F ⟨DG, h⟩H] .

Here, what plays the role of the integration is the inner product with respect to h, and a anti derivative is given
by the first lemma.

Proof of the lemma : We apply the first lemma to the product
FG, where we can use the usual derivative rules for real functions :

E [FG ·X(h)] = E [⟨D(FG), h⟩H] .

And we have by differentiating real functions :

D(FG) = GDF + FDG.

□

We can as a consequence show the following property which generalize what we saw on first section.

Proposition III.1 : The derivative operator is closable

Let q ⩾ 1. Then,

D :
(

S,E [| · |q]
1
q

)
−→

(
Lq(Ω → H),E [∥·∥q

H]
1
q

)

is closable on Lq(P). We still note D the extension of this map, and Dq,1 the domain of the closed operator.

Proof : • First, let us see that it is indeed taking values in
Lp(Ω→H). Let F ∈ S. Then, by convexity :

E
[
∥DF∥pH

]
⩽ np−1

n∑

i=1

E
[∣∣∣ ∂f
∂xi

(X(h1), · · · , X(hn))
∣∣∣
p]
∥hi∥pH.

Since f ∈ C∞
pol(R

n), we have :

E
[
∥DF∥pH

]
⩽ np−1Cp

n∑

i=1

E [|X(h1) · · ·X(hn)|p] ∥hi∥pH.

Which is finite, since {X(h), h ∈ H} is a Gaussian process.
• We use the sequence characterization. Let (FN )N a sequence

of S such that

E[F qN ] −−−−−−→
N→+∞

0

and such that there exists η ∈ Lq(Ω→H) such that

E
[
∥DFN − η∥qH

]
−−−−−−→
N→+∞

0.

Let us show that η = 0. We do this by proving that η ∈ H⊥, and
to do this, we show that :

∀G ∈ S, ∀h ∈ H,E [G⟨η, h⟩H] = 0.
Let G ∈ S :

G = g(X(h1), · · · , X(hn));
and for all δ > 0 :

Zδ
def.= Ge−δX(h)2

e
−δ
∑n

i=1
X(hi)2

.

Then Zδ ∈ S since by corollary I.2 (Rodrigues formula) :

∀k ∈ N∗,
dk

dxk

[
e

−x2
2

]
= (−1)pe

−x2
2 Hk(x).

We note k such that all the partial derivatives of g satisfy :

|∂g(x1, · · · , xn)| ⩽ C|x1|k · · · |xn|k,
and

Mδ,k
def.= sup

x∈R

∣∣∣xke−δx2
∣∣∣ .

Hence, P-almost surely :

|Zδ| ⩽ CMn
δ,ke

−δX(h)2
.

▷ We have for all h ∈ H :

E [Zδ⟨η, h⟩H] −−−−→
δ→0+

E [G⟨η, h⟩H] .

Indeed, by using 1− e−x ⩽ x for x ⩾ 0, we have :

E
[
|Zδ −G|2

]
⩽ δE

[
G2
] 1

2 · E

[(
X(h)2 +

n∑

k=1

X(hk)2

)2] 1
2

,

which goes to zero when [δ → 0+]. By continuity of the inner
product on L2, we conclude on the expected limit. As a consequence,
we just need to show that for all δ > 0 :

E [Zδ⟨η, h⟩H] = 0.
▷ We also have :

E [Zδ⟨DFN , h⟩H] −−−−−−→
N→+∞

E [Zδ⟨η, h⟩H] .

But, by integration by parts formula :
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E [Zδ⟨DFN , h⟩H] = E [FNZδ X(h)]− E [Fn⟨DZδ, h⟩H] .
We just need to show that both terms go to zero when [N →

+∞].
▷ For the first term, we have by definition of Mδ :

|E [FNZδ X(h)]| ⩽ CMn+1
δ,k

E[|FN |].
By Hölder inequality, this term goes to 0 when [N → +∞].
▷ For the second term, we need to find a deterministic bound

for ∥DZδ∥ to use the same argument as the first term. The (awful)
computation gives :

DZδ

=
n∑

j=1

∂g

∂xj
(X(h1), · · · , X(hn))hj

· e−δ
(
X(h)2+

∑n

i=1
X(hi)2

)

− δ

n∑

j=1

X(hj)Zδhj

− δX(h)Zδh.
We can then estimate its norm :

∥DZδ∥H

⩽ CMn
δ,ke

−δX(h)2
n∑

j=1

∥hj∥H

+ CδMn
δ,kMδ,k+1

(
∥h∥H +

n∑

j=1

∥hj∥H

)
.

Here is our deterministic bound. We can consequently estimate
the second term of the integration by parts, using Cauchy-Schwarz
inequality :

|E [Fn⟨DZδ, h⟩H]|

⩽ E[|FN |] · C∥h∥HM
n
δ,ke

−δX(h)2
n∑

j=1

∥hj∥H

+ E[|FN |] · CδMn
δ,kMδ,k+1

(
∥h∥2

H +
n∑

j=1

∥hj∥H∥h∥H

)
.

It follows that the second term also goes to zero.
▷ So, we have

E [Zδ⟨DFN , h⟩H] −−−−−−→
N→+∞

0.

Meaning that for every h ∈ H and δ > 0 :

E [Zδ⟨η, h⟩H] = 0.
By letting [δ → 0+], we get, for all G ∈ S and h ∈ H :

E [G⟨η, h⟩H] = 0.
It means that ⟨η, h⟩H ∈ S⊥ in L2(P). Since S is dense in L2(P),

we conclude that for every h ∈ H, P-almost surely :

⟨η, h⟩H = 0.

Hence, η ∈ H⊥ P-almost surely, so η = 0 in Lq . We have shown
that the operator D is closable. □

Recall that in this case, D1,2 is the closure of S for

∀F ∈ S, ∥F∥2
1,2

def.= E
[
|F |2

]
+ E

[
∥DF∥2

H

]
.

We have the following characterization : F ∈ D1,2 if and only if there exists a sequence (Fn)n of elements of D1,2

such that (Fn)n converges in L2(P) to F and such that (DFn)n is a Cauchy sequence for ∥·∥D1,2 . It is equivalent to
find Fn ∈ S.

Theorem III.1 : Domain of the Malliavin derivative and chaos expansion

Let F ∈ L2(Ω,F ,P). Then, the following are equivalents :
(i) F ∈ D1,2 ;
(ii) The series

∑
n nE

[
JnF

2] converges.
In this case, we have

E
[
∥DF∥2

H

]
=

+∞∑

n=0
nE
[
JnF

2] ,

and for all n ⩾ 1, we have D(JnF ) = Jn−1(DF ).

Proof : [=⇒] All the game here is to compute E
[
∥DF∥2

H
]

for
every F ∈ D1,2.
• We begin by the simplest case : for F = Hn(X(h)). Then,

F ∈ S so belongs to the domain of the Malliavin derivative. Its deri-
vative is :

D(Hn(X(h)) = H′
n(X(h))h.

By the recurrent relation satisfied by (Hn)n, we have :

D(Hn(X(h)) = nHn−1(X(h))h.
This also writes

D(Jn(Hn(X(h))) = Jn−1D(Hn(X(h)),
which is the relation we want to prove. Finally, if we take norm

on both sizes :

E
[
∥D(Hn(X(h))∥2

H
]

= n2∥h∥2
HE
[
Hn−1(X(h))2

]
.

By the lemma II.2, we have an expression of the covariance of
Hermite polynomials :

E
[
∥D(Hn(X(h))∥2

H
]

= n2(n− 1)!∥h∥2
H∥h∥

2(n−1)
H .
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And once again by this lemma, by giving a n from n2, we get :

E
[
∥D(Hn(X(h))∥2

H
]

= nE
[
Hn(X(h))2

]
.

This is the equality we expected for F = Hn(X(h)).
•We extend it to all finite linear combination of Hn(X(h)) (which

is still smooth so still in D1,2). Let F ∈ Vect(Hn(X(h)), h ∈ H), with
∥h∥H = 1 :

F =
K∑

k=1

αkHn(X(hk)).

Then,

DF = n

K∑

k=1

αkHn−1(X(hk))hk.

We expend the expectation of the squared norm of it.

E
[
∥DF∥2

H
]

= n2
K∑

k,l=1

αkαlE [Hn−1(X(hk))Hn−1(X(hl))] ⟨hk, hl⟩.

But, we know by lemma II.2 that if (X,Y ) is a centered Gaussian
couple with E[X2] = E[Y 2] = 1, then

E[Hn(X)Hn(Y )] = n!E[XY ]n.
It yields here to, by definition of X being an isonormal Gaussian

process :

E
[
∥DF∥2

H
]

= n2(n− 1)!
K∑

k,l=1

αkαl⟨hk, hl⟩n.

By giving a "n" from n2, it writes :

E
[
∥DF∥2

H
]

= n

K∑

k,l=1

n!αkαl⟨hk, hl⟩n.

And using once again the equality of the covariance of Hermite
polynomials, we get :

E
[
∥DF∥2

H
]

= n

K∑

k,l=1

αkαlE [Hn(X(hk))Hn(X(hl))] .

By linearity, we have :

E
[
∥DF∥2

H
]

= nE

[(
K∑

k=1

αkHn(X(hk))

)2]
.

Meaning :

E
[
∥DF∥2

H
]

= nE[F 2].
The first expression of the statement is true for every F ∈

Vect(Hn(X(h)), h ∈ H). Same for the second equality between D
and Jn−1, which is just coming from the linearity of the two opera-
tors.
• Set n ∈ N. Let us prove that we can extend it on Hn. First,

notice that we can extend it on Hn ∩D1,2 by continuity for the norm

∥F∥2
D1,2 = E[F 2] + E

[
∥DF∥2

H
]

of D and Jn on Hn ∩D1,2. Same for the second equality. Second,
let us show that in fact, Hn ⊂ D1,2. Indeed, if G ∈ Hn, then there
exists a sequence (ψp)p of elements of Vect(Hn(X(h)) such that

ψp
L2

−−−−−→
p→+∞

F.

Since ψp ∈ S, ψp ∈ D1,2. Moreover, (Dψp)p is a Cauchy se-
quence, since by what we proves previously (ψp ∈ Hn) :

E
[
∥D (ψp+q − ψp)∥2

H
]

= nE
[
(ψp+q − ψp)2] .

So, it means that G ∈ D1,2, and so we proved that

Hn ⊂ D1,2.

Let us notice finally that D sends Hn into Hn−1(H).
• We finally extend it on D1,2. Let us prove that once again, the

continuity for the norm D1,2 will allow us to conclude. Let F ∈ D1,2.
Then, by the previous point, since Hn ⊂ D1,2, we have JnF ∈ D1,2.
For all N ∈ N, we have by orthogonality of the spaces Hn(H) and by
the previous points :

E

[∥∥∥∥∥D

(
N∑

n=0

JnF

)∥∥∥∥∥

2

H

]
(∗)
=

N∑

n=0

nE
[
JnF

2
]
.

But, by decomposition theorem on general Hilbert spaces, we have
in L2(Ω→H) :

DF =
+∞∑

n=0

Jn(DF ).

So, by the previous point, and since the derivative of a constant
is zero :

DF =
+∞∑

n=0

D(Jn+1F ) =
+∞∑

n=0

D(JnF ).

Hence, it means that in L2(Ω→H), we have :

N∑

n=0

D(JnF ) L2(Ω→H)−−−−−−−→
N→+∞

DF.

Consequently, the right hand side of (∗) converges, so the left
hand side too. This proves (ii). Moreover, we can take the limit as
[N → +∞] to conclude to the equality for every F ∈ D1,2. Once
again, the second equality is true by continuity.

[⇐=] Let F ∈ L2(P). We suppose that the series
∑

n
nE
[
JnF 2

]
is convergent. We will prove that F ∈ D1,2 by approaching it by its
truncated sums in Wiener decomposition. Here’s the plan.
• First, since we know that

∑N

n=0 JnF converges to F in L2,
let us prove that JnF ∈ D1,2 by approaching it by Hermite
polynomials.

• Then, we have to show that the convergence is not only in L2

but in D1,2.
Let us prove it.
• We set n ∈ N. By definition of belonging to Hn, there exists a

sequence (ψp)p of elements of Vect(Hn(X(h)) such that

ψp
L2

−−−−−→
p→+∞

JnF.

We have ψp ∈ S, since Hn is a polynomial, hence ψp ∈ D1,2.
To show that JnF ∈ D1,2, it enough to show that (Dψp)p a Cauchy
sequence in L2(Ω → H). But, by the computations made in (i), we
have in fact, for all q ∈ N :

E
[
∥D (ψp+q − ψp)∥2

H
]

= nE
[
|ψp+q − ψp|2

]
.

By L2-convergence of (ψp), this sequence is also a Cauchy se-
quence, the right hand side is as small as we want, and so (Dψp)p is
Cauchy. This concludes that JnF ∈ D1,2.
• Now, n is not set, and we set :

ϕn
def.=

n∑

k=0

JkF.

By the previous point, ϕn ∈ D1,2. By the Wiener-Itô decompo-
sition, (ϕn)n converges in L2 to F . We just have to show that, one
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more time, (Dϕn)n is a Cauchy sequence on L2(Ω→H). Using once
again (i) for ϕn, we have, for all p ∈ N :

E
[
∥D (ϕn+p − ϕn)∥2

H
]

=
+∞∑

k=0

kE
[
Jk (ϕn+p − ϕn)2] .

But, we have :

ϕn+p − ϕn =
n+p∑

k=n+1

JkF,

so we can easily compute the projections of it :

E
[
∥D (ϕn+p − ϕn)∥2

H
]

=
n+p∑

k=n+1

kE
[
JkF

2
]
.

We can bound it :

E
[
∥D (ϕn+p − ϕn)∥2

H
]
⩽

+∞∑

k=n+1

kE
[
JkF

2
]
.

Since the series converges by hypothesis, we conclude that (Dϕp)p
is indeed a Cauchy sequence, and so that F ∈ D1,2. We proved the
characterization. □

Note : For all F ∈ L2, JnF ∈ D1,2. Moreover, the operator D is an isometry on Hn.

Corollary III.1 : When the Malliavin derivative is zero

Let F ∈ D1,2 such that DF = 0 P-almost surely. Then P-almost surely :

F = E[F ].

III.2 Chain rule and consequences
Before proving it, we use a lemma which helps to know if a limit of elements of D1,2 still belongs to D1,2.

Lemma III.4 : A sufficient condition to be in the domain of the Malliavin derivative
Let (Fn)n a sequence of D1,2 and let F ∈ L2(P). If we suppose that :

(i) The sequence (Fn)n converges to F in L2(P) ;
(ii) The sequence of its derivatives is bounded :

sup
n∈N

E
[
∥DFn∥2

H

]
< +∞.

Then F ∈ D1,2, and for all U ∈ L2(Ω → H) :

E [⟨DFn, U⟩H] −−−−−→
n→+∞

E [⟨DF,U⟩H]

We will admit it.

Proposition III.2 : Chain rules

1. Let φ ∈ C1
b(R) (φ and φ are bounded), and F ∈ D1,2. Then φ ∈ D1,2 with

Dφ(F ) = φ′(F ) DF.

2. Let φ ∈ C1
b(Rm,R), p ∈ N∗ and F = (F 1, · · · , Fm) a real random vector such that every F k ∈ D1,2. Then

φ(F ) ∈ D1,2 and :

D(φ(F )) =
m∑

i=1

∂φ

∂xi
(F i)DF i.

Proof : The demonstration is the same for the two points, it is
just technical details form differential calculus that makes the second
point different from the first. We just prove the first point.
• If φ ∈ C∞

b (R) ⊂ C∞
pol(R) and F ∈ S, then φ(F ) ∈ S too and

the formula is true :

Dφ(F ) = φ′(F )DF.

It remains true for F ∈ D1,2, since if (Fn)n ∈ SN converges in
D1,2 to F then we have

∣∣φ′(Fn)
∣∣ ⩽
∥∥φ′∥∥

∞,

so by dominated convergence, we have
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φ′(Fn) L2
−−−−−→
n→+∞

φ′(F ),
so

Dφ(Fn) L2(Ω→H)−−−−−−−→
n→+∞

φ′(F )DF.

Also by dominated convergence, (φ(Fn))n converges to φ(F ) in
L2. By the lemma, it means that φ(F ) ∈ D1,2, and that we have
the weak convergence of (Dφ(Fn))n. Since this sequence actually
converges in L2(Ω→H), it means that the formula remains true for
every F ∈ D1,2.
• To conclude, we approach φ ∈ C1

b (R) with the help of an ap-
proximation of unity (ρε)ε>0, that is ρε ∈ C∞ satisfies that ρε ⩾ 0,
´

R ρε = 1 and Supp(ρε) ⊂ [−ε, ε]. We define

φε
def.= φ ∗ ρε.

Then φε converges uniformly to φ on R. By the precedent point,
for all ε > 0, we have, for F ∈ D1,2 :

Dφε(F ) = φ′
ε(F )DF.

But, by dominated convergence, we have

φ′
ε(F )DF L2(Ω→H)−−−−−−−→

ε→0
φ′(F )DF.

Meaning that (Dφε(F ))ε>0 converges on L2(Ω → H). By the
lemma, it means that φ(F ) ∈ D1,2, and the formula, as the same
argument as precedent point. □

We can extend this result by the same argument on Lipschitz functions.

Proposition III.3 : Chain rule for Lipschitz functions

Let φ : R −→ R which is K-Lipschitz. Let F ∈ D1,2. Then φ(F ) ∈ D1,2. Moreover, there exists G ∈ L2 such
that |G| ⩽ K P-almost surely and

Dφ(F ) = G DF.

Proof : Same argument as previously. We define once again
φε = φ ∗ ρε, with ρε being an approximation of unity. Then by pre-
cedent proposition :

Dφε = φ′
ε(F ) DF.

By dominated convergence,

φε(F ) L2
−−−→
ε→0

φε(F ),

and we have by the fact that φ is K-Lipschitz :

sup
ε>0

E
[
∥Dφε(F )∥H

]
⩽ KE

[
∥DF∥

]
< +∞.

Hence, by the lemma φ(F ) ∈ D1,2, and (Dφε(F ))ε>0 weakly
converges to Dφ(F ). Finally, since (φ′

ε(F ))ε>0 is bounded by K in
L2, there exists a subsequence of it that weakly converges to a cer-
tain G ∈ L2 which is bounded by K. By dominated convergence,
(Dφε(F ))ε>0 weakly converges, up to the extraction, to GDF . By
unicity of the weak limit, it means that

Dφ(F ) = GDF.

Which is the expected formula. □

We can imagine a similar result for φ : Rm −→ R which is Lipschitz. Those chain rules remains true in D1,p, for
every p ⩾ 1.

Corollary III.2 : Indicator belonging or not in the Malliavin domain
Let A ∈ F . Then the following assertions are equivalent :

(i) The indicator function of A belongs to D1,2 : 1A ∈ D1,2 ;
(ii) We have P(A) ∈ {0, 1}.

In particular, for all h ∈ H, 1{X(h)>0} does not belong to D1,2.

Proof : [=⇒] If F def.= 1A ∈ D1,2, then since F 2 = F , we apply
the chain rule lemma for φ ∈ C∞

0 (R) such that φ(x) = x2 on [0, 1] :

DF = 2FDF
If we suppose that DF is not equal to zero, then, we would have

F = 1
2 , which is impossible. Then, we have DF = 0, meaning by

corollary III.1 that F = E[F ] almost surely, meaning here that

P(A) = 1A ∈ {0, 1}.

[⇐=] Conversely, if P(A) ∈ {0, 1}, then 1A is almost surely
constant, and so belongs to D1,2.
• Since

P(X(h) > 0) = 1
2
,

1{X(h)>0} does not belong to D1,2. □

III.3 White noise
For the rest of this section, H = L2(T,B, µ), like in previous section. We set an isonormal process X, and a

white noise W associated.
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Definition III.3
Let F ∈ D1,2. We note DtF ∈ R the Malliavin derivative taken in t of F :

D :




D1,2 −→ L2(T )

F 7−→
(
T −→ R
t 7−→ DtF

)

 .

That is, if F = f(X(h1), · · · , X(hn)) ∈ S :

∀t ∈ T,DtF
def.=

n∑

i=1

∂f

∂xi
(X(h1), · · · , X(hn))hi(t)

We can define the multi derivative of a random variable easily here. The general case use tensor products.

Definition III.4
Let k ∈ N∗ and s, t ∈ T . We define for F = f(X(h1), · · · , X(hn)) ∈ S :

D2
s,tF

def.=
∑

i,j

∂2f

∂xi∂xj
(X(h1), · · · , X(hn))hi(t)hj(s).

Remark : In the general case, D2 : S −→ H ⊗ H is given by

D2F =
∑

i,j

∂2
i,jf(X(h1), · · · , X(hn))hi ⊗ hj .

Remark : We can define Dk
t1,··· ,tk

by this way. We can show by the exact same way than the general case that
this operator is closed. We note Dk,2 the domain of its closure, which is the closure of S for the norm

∥·∥k,2
def.=


E

[
| · |2

]
+

k∑

j=1

ˆ

T j
E
[∣∣∣Dj

t1,··· ,tk
·
∣∣∣
2
]

dµ(t1) · · · dµ(tk)




1
2

.

In the case of white nose, it is easy to compute the derivative of a L2 random variable.

Theorem III.2 : Derivative in white noise case

Let F ∈ L2(P) having its Wiener chaos decomposition given by F =
∑+∞

n=0 In(fn), with fn ∈ L2(Tn)
symmetric. Then, we have

D1,2 =
{
F ∈ L2(P),

+∞∑

n=1
n2 · (n− 1)! ∥fn∥2

L2(Tn) < +∞
}
.

In this case, if F ∈ D1,2, we have for almost every t ∈ T , in L2 :

DtF =
+∞∑

n=1
nIn−1(fn(·, t)).

More generally, for every k ∈ N∗, F ∈ Dk,2 if and only if the series
∑+∞

n=k n
k · (n− k)! ∥fn∥2

L2(Tn) converges,
and we have in this case, for almost every t1, · · · , tk ∈ T :

Dk
t1,··· ,tk

F =
+∞∑

n=k

n!
(n− k)!In−k (fn(·, t1, · · · , tk)) .
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Proof : The equality is a consequence of the theorem III.1 where
we express D1,2 in terms of a series. And since for F ∈ D1,2, we have

E
[
JnF

2
]

= E
[
In(fn)2

]
= n!∥fn∥2

L2(Tn),

we can conclude to the equality of the two sets.
• Let us prove first the equality for every F ∈ S. By linearity,

it is enough to show this for F = In(fn), where fn ∈ L2(Tn) is
symmetric and elementary :

fn =
∑

i1,··· ,in

ai1,··· ,in1Ai1 · · ·1Ain .

By definition, its integral is given by :

In(fn) =
∑

i1,··· ,in

ai1,··· ,in

n∏

k=1

W (Aik ).

Since W (A) = X(1A), this means that we can compute its deri-
vative :

DtF =
n∑

j=1

∑

i1,··· ,in

ai1,··· ,in

n∏

k=1
k ̸=j

W (Aik ) 1Aj (t).

But, if we compute the right hand side of the expected equality :

In−1(fn(·, t)) =
∑

i1,··· ,in

ai1,··· ,in

n∏

k=1
k ̸=n

W (Aik ) 1An (t).

By symmetry, we have in fact for every j ∈ J1, nK :

In−1(fn(·, t)) =
∑

i1,··· ,in

ai1,··· ,in

n∏

k=1
k ̸=j

W (Aik ) 1Aj (t).

Hence, we have for the derivative of F :

DtF = nIn−1(fn(·, t)).
By continuity of D on D1,2, and by the one of In in L2(Tn)

(this is an isometry), we conclude that this expression is true for every
F ∈ Hn ∩D1,2 = Hn. (We proved the equality of the sets in theorem
III.1).
• The case of higher order derivative can be done by induction,

by the same arguments as previously. □

Corollary III.3 : An expression for fn in terms of Malliavin derivative

Let F ∈ D∞,2 def.=
⋂

p∈N∗ Dp,2 having its Wiener decomposition given by F =
∑+∞

n=0 In(fn), with fn symmetric.
Then, for every n ∈ N∗, almost everywhere in Tn :

fn = 1
n!E [Dn

•F ] .

Proof : We do it for elementary functions and we conclude by
density. Let k ∈ N∗ and t1, · · · , tk ∈ T . Then, for all n ⩾ k :

E [In−k(fn(·, t1, · · · , tk))]

=
∑

i1,··· ,in

ai1,··· ,in

n∏

j=n−k+1

1Aij

· E

[
n−k∏

j=1

W (Aij )

]
.

This expectation is zero except if n = k, where we have :

E [I0(fn(t1, · · · , tn))] =
∑

i1,··· ,in

ai1,··· ,in

n∏

j=1

1Aij .

That is fn. We get by consequently, by the expansion proved in
the previous proposition :

E
[
Dnt1,··· ,tnF

]
= n!fn.

We get the expected relation. □

Let us prove the following property, showing a way to see the relevance of Malliavin derivative. If A ∈ B, we
note

FA
def.= σ (W (B), B ∈ B, B ⊂ A,µ(B) < +∞) .

Proposition III.4 : Measurability on a subset and derivative

Let F ∈ D1,2, A ∈ B. We suppose that F is FA-measurable. Then, µ-almost everywhere on Ac and P-almost
surely,

DtF = 0.

Lemma III.5 : Conditional expectation and Malliavin derivative

Let F ∈ L2 having its Wiener chaos expansion given by F =
∑+∞

n=0 In(fn). Let A ∈ B.
(i) We have the following expansion in Wiener chaos for E[F |FA] :
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E [F |FA] =
+∞∑

n=0
In

(
fn1⊗n

A

)
.

(ii) If F ∈ D1,2, we also have E[F |FA] ∈ D1,2. We can compute the derivative of E[F |FA] :

Dt(E[F |FA]) = E[DtF |FA] 1A(t),

for almost every t ∈ T , and P-almost surely.

Proof of the lemma : (i) By linearity and density, we just have
to check this formula for

fn = 1B1×···×Bn ,

with Bi ∈ B two by two disjoints, and µ(Bi) < +∞. In this case,
we just have

In(fn) =
n∏

k=1

W (Bk),

and we can compute the conditional expectation in this case.

E [In(fn)|FA] = E

[
n∏

k=1

W (Bk)

∣∣∣∣∣ FA
]
.

We make appear A, we get :

E [In(fn)|FA] = E

[
n∏

k=1

W (A ∩Bk) +W (Ac ∩Bk)

∣∣∣∣∣ FA
]
.

We brutally expend the product :

E [In(fn)|FA]

=
n∑

k=0

∑

K∈Pk(J1,nK)

E
[∏

j∈K

W (A ∩Bk)

·
∏

j /∈K

W (Ac ∩Bk)
∣∣∣ FA

]
.

The terms "W (A ∩B)" are FA-measurable, so :

E [In(fn)|FA]

=
n∑

k=0

∑

K∈Pk(J1,nK)

∏

j∈K

W (A ∩Bk)

· E

[∏

j /∈K

W (Ac ∩Bk)

∣∣∣∣∣ FA
]
.

The terms "W (Ac ∩B)" are independent of FA, so :

E [In(fn)|FA]

=
n∑

k=0

∑

K∈Pk(J1,nK)

∏

j∈K

W (A ∩Bk)

· E

[∏

j /∈K

W (Ac ∩Bk)

]
.

The expectation is zero unless the product is over the empty set,
meaning that K = J1, nK : the only non zero term is for k = n, and
it yields to :

E [In(fn)|FA] =
n∏

j=1

W (Bj ∩A).

We get the definition of In of a tensor product :

E [In(fn)|FA] = In
(
fn1⊗n

A

)
.

Which is what we want.
(ii) We use (i) and twice the proposition III.4. We have by (i) the

expansion in Wiener chaos of E[F |FA], so we can express its deriva-
tives thanks to the previous proposition :

DtE[F |FA] =
+∞∑

n=1

nIn−1

(
fn(·, t)1⊗(n−1)

A

)
1A(t).

But, by the previous point for the variable DtF , whose expansion
on Wiener chaos is known by the previous proposition, we have :

E [DtF |FA] =
+∞∑

n=1

nIn−1

(
fn(·, t)1⊗(n−1)

A

)
.

Finally, we obtain what we want :

DtE[F |FA] = 1A(t) E [DtF |FA] .

□

We have everything to prove the proposition.

Proof : If F is FA-measurable, then the point (ii) of the lemma
writes DtF = E[DtF |FA] 1A(t)

which is zero when t /∈ A. □

IV The divergence operator
Recall the definition of an adjoint in unbounded operator theory.
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Definition IV.1
Let (A,D(A)) an unbounded operator on a Hilbert space E, valued in an Hilbert space F . If D(A) is dense
in E, we define the adjoint of A the unbounded operator (A∗, D(A∗)) on F , where

D(A∗) def.= {v ∈ F,∃C > 0,∀u ∈ D(A), |⟨Au, v⟩F | ⩽ C∥u∥E} ,
and A∗ is uniquely defined by the duality formula :

∀u ∈ D(A),∀v ∈ D(A∗), ⟨Au, v⟩F = ⟨u,A∗v⟩E .

In our case, δ would be the adjoint of the Malliavin derivative on L2, whose domain D1,2 contains the set of
smooth random variables which is dense in L2(P).

Definition IV.2
We call divergence operator the unbounded operator (δ,D(δ)) on L2(Ω → H) with values on L2(P) with :

D(δ) def.=
{
u ∈ L2(Ω → H),∃C ⩾ 0,∀F ∈ D1,2, |E [⟨DF, u⟩H]|2 ⩽ CE

[
|F |2

]}
.

and the operator δ is uniquely defined by the duality formula :

∀F ∈ D1,2,∀u ∈ D(δ),E [Fδ(u)] = E [⟨DF, u⟩H] .

Remark : it is equivalent to substitute all the "∀F ∈ D1,2" by "∀F ∈ S".
To make things easier, and to avoid the using of tensor products, we immediately does the things in H =

L2(T,B, µ). The objects introduced in this section could be defined on general real separable Hilbert spaces, we will
explain it in a few remarks.

IV.1 Computation on simple elements
This part remains in the case where H is a general real separable Hilbert space.
A first result is a generalization of our integration by parts result. We can now integrates by parts not only with

h ∈ H but with every u ∈ D(δ).

Lemma IV.1 : Integration by parts

Let F,G ∈ D1,2 and u ∈ D(δ). Then

E[G⟨DF, u⟩H] = E[FG δ(u)] − E[F ⟨DG, u⟩H].

Proof of the lemma : We do the same computations as the case
where u is deterministic. We have

D(FG) = GDF + FDG.

Hence,

E [⟨D(FG), u⟩] = E [F ⟨DG, u⟩] + E [G⟨DF, u⟩] .
Finally, the first term gives by duality :

E [⟨D(FG), u⟩] = E [FG δ(u)] .

This completes the proof. □

Let us compute this operator for a class of random variables which would play the role of simple elements.

Lemma IV.2 : Simple elements of L2(Ω → H)

Let us note SH ⊂ L2(Ω → H) the set of elements of the type

u =
n∑

j=1
Zjhj ,

with Zj ∈ S smooth and hj ∈ H. Then SH ⊂ D(δ) and for all u ∈ SH :
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δ(u) =
n∑

j=1
ZjX(hj) −

n∑

j=1
⟨DZj , hj⟩H.

Proof of the lemma : Let u ∈ SH of the proposed form in the
lemma. Let F ∈ D1,2. Then, by linearity :

E [⟨DF, u⟩] =
n∑

j=1

E [Zj⟨DF, hj⟩H] .

By integration by parts formula :

E [⟨DF, u⟩] =
n∑

j=1

E [ZjF X(hj)]− E [F ⟨DZj , hj⟩] .

Thanks to this, we can use Cauchy-Schwarz inequality to conclude
that

∣∣E [⟨DF, u⟩]
∣∣

⩽
[∑n

j=1 E
[
|Zj X(hj)|2

] 1
2 + E

[
|⟨DZj , hj⟩|2

] 1
2
]
E[|F |2]

1
2 .

So, SH ⊂ D(δ). Moreover, we have by unicity of the duality
formula the expression of δ(u).

□

Proposition IV.1 : Homogeneity up to random constant

Let u ∈ D(δ). Then for all F ∈ D1,2 such that the both following expectations are finite :

E
[
F 2δ(u)2] ,E

[
⟨DF, u⟩2

H
]
< +∞,

then Fu ∈ D(δ) and we have :

δ(Fu) = Fδ(u) − ⟨DF, u⟩H.

Proof : Let G ∈ S. Then,

E[⟨DG,Fu⟩H] = E[F ⟨DG, u⟩H].
By integration by parts formula :

E[⟨DG,Fu⟩H] = E[FG δ(u)]− E[G⟨DF, u⟩H].
We get by Cauchy-Schwarz :

∣∣E [⟨DG,Fu⟩H]
∣∣

⩽ E
[
G2
] 1

2 E
[
F 2δ(u)2

] 1
2 + E

[
G2
] 1

2 E
[
⟨DF, u⟩2H

] 1
2 .

This proves that Fu ∈ D(δ), and it gives us the expression of
δ(Fu). □

We finish by a proposition allowing to determine if a limit of a sequence of elements of D(δ) is still in D(δ).

Proposition IV.2 : Limit of elements of the domain of the divergence operator

Let (un)n ∈ D(δ)N, u ∈ L2(Ω → H) and G ∈ L2(P). We suppose that :
∗ The sequence (un)n converges to u in L2(Ω → H) ;
∗ The sequence (δ(un))n converges to G in L2.

Then, u ∈ D(δ) and G = δ(u).

Proof : To show that u ∈ D(δ), we will show that for all
F ∈ D1,2 :

E [⟨DF, u⟩H] = E[FG].
Indeed, since by Cauchy Schwarz, the map

u 7−→ E [⟨DF, u⟩H]
is continuous on L2(Ω→H), we have :

E [⟨DF, u⟩H] = lim
n→+∞

E [⟨DF, un⟩H] .

By integration by parts formula on D(δ), we have :

E [⟨DF, u⟩H] = lim
n→+∞

E [Fδ(un)] .

Since, by Cauchy-Schwarz once again, the map

G 7−→ E[FG]
is continuous on L2, we have :

E [⟨DF, u⟩H] = E [FG] .
We proved our equality. It is now time to conclude. We have for

all F ∈ D1,2 :

|E [⟨DF, u⟩H]| ⩽ E
[
G2
] 1

2 E
[
F 2
] 1

2 .

It means that u ∈ D(δ). Moreover, by unicity of the adjoint, it
directly gives that G = δ(u). □
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IV.2 Differentiation on higher spaces and Heisenberg relation
We defined previously the multiple derivative of an element of L2(P). We present now the notion of derivative

for elements of L2(Ω → H), which could be seen also as L2(T → Ω) for H = L2(T,B, µ).

Definition IV.3
We consider H = L2(T,B, µ). Let u ∈ SH, given by the lemma IV.2. Then, its Malliavin derivative will be
the element Du ∈ L2(T 2 × Ω) defined by :

Du def.=
n∑

j=1
DZj ⊗ hj .

In other words, for any s, t ∈ T :

Dtus
def.=

n∑

j=1
DtZj hj(s).

For general H, the first equality is the one we use, Du is with values in H ⊗ H. By the same argument as we
used for the operator D, this operator is closable. We introduce the following norm on L2(Ω → H) :

∀u ∈ SH, ∥u∥2
1,2 = E

[
∥u∥2

H

]
+ E

[
ˆ

T 2
|Dtus|2 dµ(t) dµ(s)

]
.

Then we define D1,2(H) as the closure of SH for this norm.

Lemma IV.3 : Heisenberg relation

Let u ∈ SH. Then, for all t ∈ T , Dtu = (Dtus)s∈T ∈ D(δ), δu ∈ D1,2 and, for all t ∈ T :

Dt(δu) − δ (Dtu) = ut.

Proof of the lemma : We compute both terms in this relation,
and see where it yields to. We have first the two following expression
for Dtu and δ(u) :

Dtus =
n∑

j=1

DtZjhj(s)

and

δ(u) =
n∑

j=1

ZjX(hj)−
n∑

j=1

ˆ

T
DtZjhj(t) dµ(t).

It proves the very first part of the lemma.
• First, let us compute δ(Dtu). By linearity, we have :

δ(Dtu) =
n∑

j=1

δ(DtZj hj).

By using the expression of δ for simple elements, since DtZj ∈ S,
it gives :

δ(Dtu) =
n∑

j=1

DtZjδ(hj)−
n∑

j=1

ˆ

T
D2
s,tZjhj(s) dµ(s).

• Second, we compute Dt(δ(u)). By linearity :

Dt(δ(u)) =
n∑

j=1

Dt(ZjX(hj))−
n∑

j=1

Dt
[ˆ
T

DsZjhj(s) dµ(s)
]
.

We have for the first term :

Dt(ZjX(hj)) = DtZjX(hj) + Zjhj .

Hence,
n∑

j=1

Dt(ZjX(hj)) = ut +
n∑

j=1

DtZjX(hj),

which is the first term of δt(Du). Let us compute :

(A) =
n∑

j=1

Dt
[ˆ
T

DsZjhj(s) dµ(s)
]
.

To do this, we note

Zj = zj(X(g1), · · · , X(gm)).
Then, if we note

(A’) =
ˆ

T
DsZjhj(s) dµ(s),

we have

(A’) =
m∑

i=1

(ˆ
T
gi(s)hj(s) dµ(s)

)
∂zj

∂xi
(X(g1), · · · , X(gm)).

And we can compute its derivative :

Dt(A’)

=
m∑

l=1

m∑

i=1

(ˆ
T
gi(s)hj(s) dµ(s)

)

· ∂2zj
∂xl∂xi

(X(g1), · · · , X(gm))gl(t).
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We insert everything into the integral, and we find that we get
D2
s,tZj :

Dt(A’) =
ˆ

T
D2
s,tZjhj(s) dµ(s).

Finally, (A) is equal to the second term of δt(Du). This concludes
the proof. □

Proposition IV.3 : Inner product

We consider H = L2(T,B, µ). The space D1,2(H) is included to the domain D(δ). Moreover, for all u, v ∈
D1,2(H) :

E [δ(u)δ(v)] = E
[
ˆ

T

utvt dµ(t)
]

+ E
[
ˆ

T 2
DsutDtvs dµ(t) dµ(s)

]
.

Proof : We make a straightforward calculus. By definition of δ
as adjoint :

E [δ(u)δ(v)] = E
[ˆ
T
vtDtδ(u) dµ(t)

]
.

By Heisenberg relation :

E [δ(u)δ(v)] = E
[ˆ
T
vtut dµ(t)

]
+ E
[ˆ
T
vtδDtu dµ(t)

]
.

Since v and δD•u are in L2(T ), we have :

E [δ(u)δ(v)] = E
[ˆ
T
vtut dµ(t)

]
+
ˆ

T
E [vtδDtu] dµ(t).

And we use again the duality formula for δ for the variables, with
a fixed t :

E [δ(u)δ(v)]
= E

[ˆ
T
vtut dµ(t)

]
+
ˆ

T
E
[ˆ
T

DtusDsvt dµ(s)
]

dµ(t).

Which is what we expected. □

We interpret this result like this : if u ∈ L2
a is adapted and square integrable (we will define it later) then by

Itô’s isometry :

E

[∣∣∣∣
ˆ

T

ut dBt

∣∣∣∣
2
]

= E
[
ˆ

T

u2
t dt

]
.

Since, like we will see later, δ is an extension of the Itô integral, it means here that we lost the isometry property
for u ∈ D(δ), because of the second term. It is zero whenever u or v is adapted, since in this case, the derivative
will be zero on the set where u or v is not measurable.

IV.3 Multiple integrals and divergence

Lemma IV.4 : Expectation of the L2 norm of an element of L2(Ω → H)

Let u ∈ L2(Ω → H) having its Wiener decomposition given by ut =
∑+∞

n=0 In(fn(·, t)), with fn ∈ L2(Tn ×T )
symmetric with respect to its n first variables. Then,

E
[
ˆ

T

u(t)2 dµ(t)
]

=
+∞∑

n=0
n! ∥fn∥2

L2(Tn+1).

Proof of the lemma : Recall by an ancient proposition that if
f ∈ L2(Tm) and g ∈ L2(T q) then

E [Im(f)Iq(g)] = m!⟨f̃ , g̃⟩L2(Tm)δq,m,

where f̃ is the symmetrization of f . By Fubini-Tonelli, we have :

E
[ˆ
T
u(t)2 dµ(t)

]
=
ˆ

T
E
[
u(t)2

]
dµ(t).

By the decomposition in Wiener chaos :

E
[ˆ
T
u(t)2 dµ(t)

]
=
ˆ

T

+∞∑

n=0

E
[
In(fn(·, t))2

]
dµ(t).

Since fn has its first n components which are symmetric, we have :

E
[ˆ
T
u(t)2 dµ(t)

]
=
ˆ

T

+∞∑

n=0

n!∥fn(·, t)∥2
L2(Tn) dµ(t).

By a new switching, we finally have :

E
[ˆ
T
u(t)2 dµ(t)

]
=

+∞∑

n=0

n!∥fn∥2
L2(Tn+1).

□
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Lemma IV.5 : Projection of divergence on Wiener chaos

Let u ∈ L2(Ω → H) having its Wiener decomposition given by ut =
∑+∞

n=0 In(fn(·, t)), with fn ∈ L2(Tn ×T )
symmetric with respect to its n first variables. Let G = In(g) ∈ Hn, with g ∈ L2(Tn) symmetric. Then,

E
[
ˆ

T

ut DtG dµ(t)
]

= E [GIn(fn−1)] .

Proof of the lemma : The computation uses the same arguments
as the previous lemma. Notice first that

DtG = nIn−1(g(·, t)),
by computation of derivatives with a Wiener chaos expansion. As

a consequence, after using the Fubini theorem :

E
[ˆ
T
ut DtG dµ(t)

]

= n

+∞∑

m=0

ˆ

T
E [Im(fm(·, t))In−1(g(·, t))] dµ(t).

Since we are in presence of symmetric functions, we have :

E
[ˆ
T
ut DtG dµ(t)

]

= n(n− 1)!
ˆ

T
⟨fn−1(·, t), g(·, t)⟩L2(Tn−1) dµ(t).

Which gives

E
[ˆ
T
ut DtG dµ(t)

]
= n!⟨fn−1, g⟩L2(Tn).

Since g is symmetric, we have :

E
[ˆ
T
ut DtG dµ(t)

]
= n!⟨f̃n−1, g⟩L2(Tn).

And so :

E
[ˆ
T
ut DtG dµ(t)

]
= E [In(fn−1)In(g)] .

By definition of G, it gives :

E
[ˆ
T
ut DtG dµ(t)

]
= E [In(fn−1)G] .

□

Remark : Let fn(·, t) like previously. Then, we have

f̃n = 1
n+ 1

n+1∑

k=1
f ◦ τk

where τk is the permutation between the k-th component and the last, τn+1 is the identity.

Theorem IV.1 : Domain of δ and Wiener chaos

Let u ∈ L2(Ω → H) having its Wiener decomposition given by ut =
∑+∞

n=0 In(fn(·, t)), with fn ∈ L2(Tn ×T )
symmetric with respect to its n first variables. Then, u ∈ D(δ) if and only if the series

∑
n⩾0 In+1(fn)

converges in L2(P). In this case, we have in L2 :

δ(u) =
+∞∑

n=0
In+1(fn).

Proof : [=⇒] Let u ∈ D(δ). Then, by the previous lemma,

∀G ∈ Hn,E[Gδ(u)] = E[GIn(fn−1)].

But, δ(u) expends in Wiener chaos by δ(u) =
∑+∞

n=0 Jn(δ(u)).
Jn(δ(u)) is the unique element of Hn such that

∀G ∈ Hn,E[Gδ(u)] = E[GJn(δ(u))].
Hence, for all n ⩾ 1, Jn(δ(u)) = In(fn−1). Since

∑
n
Jn(δ(u))

converges in L2, the series
∑

n
In(fn−1) converges in L2 and

In(fn−1) is the projection of δ(u) on Hn.
[⇐=] Suppose that

∑
n⩾1 In(fn−1) converges in L2, and note

V its limit. Let G =
∑N

n=0 In(gn). Then, by the previous lemma :

E
[ˆ
T
utDtG dµ(t)

]
=

N∑

n=0

E [In(gn)In(fn−1)] .

Hence, by Cauchy-Schwarz and orthogonality of Wiener chaos :
∣∣∣E
[ˆ
T
utDtG dµ(t)

]∣∣∣

⩽ E

[
N∑

n=0

In(fn−1)2

] 1
2

E

[
N∑

n=0

In(gn)2

] 1
2

.

We have by Bessel inequality :
∣∣∣E
[ˆ
T
utDtG dµ(t)

]∣∣∣ ⩽ E
[
V 2
] 1

2 E
[
G2
] 1

2 .

Since this equality is true for every random variable having a finite
Wiener chaos decomposition, and since all the members are continuous
with respect to G for the norm ∥·∥1,2 in L2, we conclude that this in-
equality is true for every G ∈ D1,2, and then it follows that u ∈ D(δ).

□
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Corollary IV.1 : Domain of the divergence
We have

D(δ) =
{
u ∈ L2(Ω → H),

+∞∑

n=0
(n+ 1)!

∥∥f̃n

∥∥2
L2(Tn+1) < +∞

}

where we decomposed u like in the previous proposition. For all u ∈ D(δ), the sum of this series is E[δ(u)2] :

E
[
δ(u)2] =

+∞∑

n=0
(n+ 1)!

∥∥f̃n

∥∥2
L2(Tn+1).

Proof : [⊂] If u ∈ D(δ), then by the previous theorem, we have

E
[
δ(u)2

]
= E

[
+∞∑

n=0

In+1(fn)2

]
.

By orthogonality in Wiener chaos, and by the expression of the
L2 norm of In, we have :

E
[
δ(u)2

]
=

+∞∑

n=0

(n+ 1)!
∥∥f̃n
∥∥2
L2(Tn+1)

,

which is finite, since u ∈ D(δ).
[⊃] If

∑
n⩾0(n+ 1)!

∥∥f̃n
∥∥2
L2(Tn+1)

converges, then

+∞∑

n=0

(n+ 1)!
∥∥f̃n
∥∥2
L2(Tn+1)

=
+∞∑

n=0

E
[
In(fn+1)2

]
.

By Fubini :

+∞∑

n=0

(n+ 1)!
∥∥f̃n
∥∥2
L2(Tn+1)

= E

[
+∞∑

n=0

In(fn+1)2

]
.

Since this sum converges, the expectation is finite, and then∑+∞
n=0 In(fn+1)2 is finite in L2. But, if p,N ∈ N :

E



(
p+N∑

n=N

In+1(fn)

)2

 ⩽ E

[
+∞∑

n=N

In+1(fn)2

]

That is
∑

n
In(fn+1) is a Cauchy sequence in L2, so converges,

and so F ∈ D(δ) by the previous theorem. □

IV.4 Skorohod integral
IV.4.1 Recalls on Itô’s stochastic integration

The divergence operator allows us to extend the Itô’s stochastic integral. We give here some properties of this
integration.

Let (Bt)t a Brownian motion, defined for instance on the canonical space : that is Ω = C0(R+), F = B(Ω) and
P defined as, for all cylinder, with A1, · · · , An ∈ B(R) :

C = {ω ∈ Ω, ωt1 ∈ A1, · · · , ωtn ∈ An}
we have :

P(C) def.=
ˆ

A1×···×An

pt1(x1)
n∏

k=2
ptk−tk−1(xk − xk−1) dxn · · · dx1,

where

pt(x) def.= 1√
2πt

e
−x2

2t .

Then, Bt : ω −→ ωt is a Brownian motion : it is a centered Gaussian process such that E[BtBs] = s ∧ t. We
want to define an integration theory with (Bt) :

´

T
ut dBt. We can’t do this thanks to Stieljes integration because

(Bt)t has an infinite total variation. Indeed, we can prove the following lemma about quadratic variation of (Bt).

Lemma IV.6 : Quadratic variation of Brownian motion
Let for all t ⩾ 0 and n ∈ N∗ :

Sn(t) def.=
2n∑

k=1

(
B tk

2n
−B t(k+1)

2n

)2
.
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Then,

Sn(t) P-a.s,L2

−−−−−→
n→+∞

t.

Proof of the lemma : • Let us prove first the convergence in
L2. We just need to use that E[N4] = 3 when N ∼ N (0, 1). We just
expend

∆n
def.= E

[
|Sn(t)− t|2

]
.

We use the independence of the increments and the fact that
Bt ∼ N (0, t) to get :

∆n = t

2n−1 ,

which goes to zero when [n → +∞], so the L2-convergence is
checked.
• For the P-almost sure convergence, we use the Borel-Cantelli

lemma. Indeed, for all ε > 0, by Bienaymé-Tchebychev inequality,

P (|Sn(t)− t| > ε) ⩽ 1
ε22n−1 .

Hence, the series
∑

n
P (|Sn(t)− t| > ε) converges, so Sn(t)

converges P-almost surely to t. □

We will then define this integral by density. We want a property on simple elements then we take the closure of
those simple elements, exactly like we did for Wiener integral. In the following, we set T an interval of R+.

Definition IV.4
We say that a process U = (Ut)t∈T is elementary if there exists t1 < t2 < · · · < tn+1 elements of T , and
(Fi)i which are (Fti)i-random variables such that for all t ∈ T :

Ut =
n∑

i=1
Fi1]ti,ti+1].

We note E0 the set of elementary process.

Notice that we opened at the left and closed at the right. In this case, we define our integral like this.

Definition IV.5
Let U ∈ E0 defines like in the previous definition. Then, we define its Itô’s integral as :

ˆ

T

Ut dBt
def.=

n∑

i=1
Fi

(
Bti+1 −Bti

)
.

Notice that this a particular case of Wiener integral. Indeed, we are with H = L2(R+) with W ([0, t]) = Bt. This
why we will write

´

T
Ut dBt or

´

T
Ut dWt in the following for designing the same object.

Proposition IV.4 : Itô’s isometry

Let U ∈ E0. Then we have :
(i) The Itô integral is centered :

E
[
ˆ

T

Ut dBt

]
= 0;

(ii) We have the following isometry equality between L2(P) and L2(T × Ω) :

E

[∣∣∣∣
ˆ

T

Ut dBt

∣∣∣∣
2
]

= E
[
ˆ

T

U2
t dt

]
.

Proof : (i) Suppose that U is given by the definition IV.4. Then,
since Fi is Fti -measurable, and since Bti+1 − Bti is independent of
Fti , we have : E

[ˆ
T
Ut dBt

]
=

n∑

i=1

E[Fi]E
[
Bti+1 −Bti

]
= 0.

(ii) We expend the square of the sum and use the previous inde-
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pendent property.

E

[(ˆ
T
Ut dBt

)2
]

=
n∑

i=1

E
[
F 2
i

]
E
[(
Bti+1 −Bti

)2
]

+2
∑

i<j

E
[
FiFj

(
Bti+1 −Bti

)]
E
[
Btj+1 −Btj

]
.

The second sum is zero. The first is simply :
n∑

i=1

E
[
F 2
i

]
(ti+1 − ti) = E

[ˆ
T
U2
t dt
]
.

This concludes this proof. □

We will extend thanks to this the Itô’s integral to any adapted process.

Definition IV.6
Let U = (Ut)t a stochastic process. We say that U is adapted with respect to (Ft)t if for all t ∈ T , Ut is
Ft-measurable.
We will note L2

a(T × Ω) all the adapted processes on T such that :
ˆ

T

E[U2
t ] dt < +∞.

We have chosen Ft = σ(Bs, s ⩽ t).

Lemma IV.7 : Density of elementary processes

We suppose that T = [a, b] is a segment. The space E0 is dense into L2
a(T ) for the norm

∥U∥2
L2

a
=
ˆ

T

E[U2
t ] dt.

More precisely, every process U ∈ L2
a(T × Ω) can be approximated by

PnUt
def.= 2n

2n∑

i=1

(
ˆ a+i b−a

2n

a+(i−1) b−a
2n

Us ds
)

1]a+i b−a
2n ,a+(i+1) b−a

2n ](t).

The idea of the proof is wrong in Nualart, it is coming from Karatzas-Shreve.

Proof of the lemma : It is enough to show it for T = [0, 1].
Here’s the plan :

(i) For all continuous process U , we have (PnU)n converging to
U for the norm L2

a ;
(ii) We approach U ∈ L2

a (T ×Ω) bounded by a sequence of conti-
nuous processes V n, which can be approximated by (PmV n)m
by the point (i). We let [n→ +∞].

(iii) We approach every process U ∈ L2
a by processes UM ∈ L2

a
bounded by M > 0, and conclude by letting [M → +∞].

(iv) We show that for every n, Pn is a continuous linear operator,
so that PnU approaches U like announced in the statement.

Here we go.
(i) Let us note

∆n
def.= E

[ˆ
T
|PnUt − Ut|2 dt

]
.

Then, we write :

Ut = 2n
2n∑

i=1

(
ˆ i

2n

i−1
2n

Ut ds
)

1] i
2n ,

i+1
2n
](t).

By definition and by Chasles :

∆n = 4n
2n∑

i=1

ˆ

i+1
2n

i
2n

E

[∣∣∣∣
ˆ i

2n

i−1
2n

(Us − Ut) ds
∣∣∣∣
2
]

dt.

Then, by Cauchy-Schwarz inequality :

∆n ⩽ 4n
2n∑

i=1

ˆ

i+1
2n

i
2n

1
4n

E

[
ˆ i

2n

i−1
2n

(Us − Ut)2 ds
]

dt.

Finally, since we consider U a continuous process, then almost
surely, (Ut)t is uniformly continuous on [0, 1]. If ε > 0, then for n big
enough, we have :

∆n ⩽
2n∑

i=1

ˆ

i+1
2n

i
2n

E

[
ˆ i

2n

i−1
2n

ε ds
]

dt = ε.

That proves (i), for every continuous process U .
(ii) Let U ∈ L2

a , bounded by M > 0. We define for t > 0 :

V nt
def.= n

ˆ t

t− 1
n

Us ds.

By Cauchy-Schwarz,

E
[
V nt

2] ⩽
ˆ

T
E[U2

s ] ds < +∞,

so V nt is P-almost surely finite. Moreover, V n is a continuous
adapted process. (V nt )n converges P-almost surely to Ut. Finally, V n
is also bounded by M . By dominated convergence, it implies that

ˆ

T
E
[
(V nt − Ut)2] dt −−−−−→

n→+∞
0.
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Hence, if we set ε > 0, and n big enough such that
ˆ

T
E
[
(V nt − Ut)2] dt ⩽ ε

2
,

Then, for m big enough, by (i) :
ˆ

T
E
[
(PmV nt − V nt )2] dt ⩽ ε

2
.

Hence, for those m, we have :
ˆ

T
E
[
(PmV nt − Ut)2] dt ⩽ ε,

and we succeed to approach U by elementary processes.
(iii) Finally, for a general U ∈ L2

a (T × Ω), we set UM (t) def.=
Ut1{|Ut|⩽M}. UM is bounded by M , and belongs to L2

a . By (ii), we
can approach UM by elements of E0. Moreover,

|UM (t)| ⩽ |Ut|,
and U ∈ L2

a . By dominated convergence theorem,
ˆ

T
E
[
|UM (t)− Ut|2

]
dt −−−−−−→

M→+∞
0.

(iv) Let U ∈ L2
a . Then, by Cauchy-Schwarz inequality,

ˆ

T
E
[
|Pnut|2

]
dt ⩽

2n∑

i=1

E

[
ˆ

i+1
2n

i
2n

U2
s ds

]
.

Meaning by Chasles relation that
ˆ

T
E
[
|Pnut|2

]
dt ⩽

ˆ

T
E
[
U2
s

]
ds.

Hence, Pn is continuous. This proves that PnU approaches U .
Indeed, if a sequence (Um)m converges to U in L2

a , and such that
(PnUm)n converges to Um in L2

a , like in points (ii) and (iii), then
for m big enough

ˆ

T
E
[
(Um(t)− U(t))2] dt ⩽ ε

9
.

We set such m. We then have (the factors 3 coming from the
convexity of the square) :

ˆ

T
E
[
(PnU(t)− U(t))2] dt

⩽ 3
ˆ

T
E
[
(PnU(t)− PnUm(t))2] dt

+ 3
ˆ

T
E
[
(PnUm(t)− Um(t))2] dt

+ 3
ˆ

T
E
[
(Um(t)− U(t))2] dt

There exists n0 ∈ N such that for all n ⩾ n0, the two first mem-
bers are lower or equal to 3 ε9 , the first by continuity of Pn, the second
by convergence of PnUm to Um. We achieved the proof. □

For the sequel of this subsection, we set T a compact interval of R+.

Theorem IV.2 : Itô’s integral
The map

(
E0 −→ L2(P)
U 7−→

´

T
Ut dBt

)

can be extended on L2
a(T × Ω). Moreover, we still have the isometry property for every u ∈ L2

a(T × Ω).

Proof : This is a consequence of the extension of linear conti-
nuous maps theorem, using the fact that L2

a is exactly the closure of
E0 by the previous lemma. □

Then, we know how to define the stochastic Itô integral of adapted process. Let us see an application of this,
using the approximation Pn.

Proposition IV.5 : Local property

Let U ∈ L2
a(T × Ω). If we set

G
def.=
{
ˆ

T

u2
t dt = 0

}
∈ F ,

then

P
(
G ∩

{
ˆ

T

ut dBt = 0
}c)

= 0.

In other words, in G, we have
´

T
ut dBt = 0.

Proof : Once again, we set T = [0, 1]. Here’s the plan.
(i) We prove it for every PnU introduced in the lemma, by showing

that in G, PnU = 0 almost everywhere in T .
(ii) We conclude by using Itô’s isometry and letting [n→ +∞].

Here we go.

(i) We set on G. The idea is to prove that

ˆ

T
(Pnut)2 dt = 0

We have :
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ˆ

T
(Pnut)2 dt = 4n

2n∑

i=1

(
ˆ

T
1] i

2n ,
i+1
2n
](t) dt

)(
ˆ i

2n

i−1
2n

us ds
)2

.

One 2n simplifies, and we get :

ˆ

T
(Pnut)2 dt = 2n

2n∑

i=1

(
ˆ i

2n

i−1
2n

us ds
)2

.

By Cauchy-Schwarz inequality, the other 2n simplifies and :

ˆ

T
(Pnut)2 dt ⩽

2n∑

i=1

ˆ i
2n

i−1
2n

u2
s ds.

By Chasles relation :
ˆ

T
(Pnut)2 dt ⩽

ˆ

T
u2
s ds = 0.

Hence, Pnu = 0 almost everywhere in T , and so
ˆ

T
Pnut dBt = 0.

(ii) By linearity,

E

[∣∣∣
ˆ

T
Pnut dBt −

ˆ

T
ut dBt

∣∣∣
2
]

= E

[∣∣∣
ˆ

T
(Pnut − ut) dBt

∣∣∣
2
]
.

By Itô’s isometry :

E

[∣∣∣
ˆ

T
Pnut dBt −

ˆ

T
ut dBt

∣∣∣
2
]

= E
[ˆ
T

(Pnut − ut)2 dt
]
.

By the lemma, the second term goes to zero when [n → +∞].
Hence,

ˆ

T
Pnut dBt

L2
−−−−−→
n→+∞

ˆ

T
ut dBt,

so converges up to extraction P-almost surely. Since in G, we have
P-almost surely, for all n ∈ N :

ˆ

T
Pnut dBt = 0,

it means by almost sure convergence that on G, we have almost
surely :

ˆ

T
ut dBt = 0,

which proves our local property. □

Let us recall the Itô formula associated.

Theorem IV.3 : Itô formula
Let F ∈ C2(R), and M a continuous semi-martingale. Then, F (M) is a semi-martingale whose decomposition
is given by

F (Mt) = F (M0) +
ˆ t

0
F ′(Ms) dMs + 1

2

ˆ t

0
F ′′(Ms) d⟨M,M⟩s.

Notice that the term with F ′′ is only due to stochastic calculus, and doesn’t appear in deterministic calculus.

Theorem IV.4 : Itô’s integral representation theorem

Let F ∈ L2. Then, there exists an unique (up to indistinguishability) process u ∈ L2
a(T × Ω) such that

F = E[F ] +
ˆ

T

ut dBt.

To prove it, we introduce the stochastic exponential. This stochastic exponential is defined in a more general
way that the one we present here.

Lemma IV.8 : Stochastic exponential

Let u ∈ L2
a(T × Ω). There exists an unique stochastic process (up to indistinguishability) E(u) such that

E(u)0 = 1 and

dE(u)t = utE(u)t dBt.

We call it the stochastic exponential of u. It is given by :

E(u) = exp
(
ˆ t

0
us dBs − 1

2

ˆ t

0
u2

s ds
)
.
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Proof of the lemma : If we suppose that X satisfies the EDS,
and that X is almost surely strictly positive, then if we apply the Itô
formula for F = ln on R∗

+ :

lnXt =
ˆ t

0

dXs
Xs
− 1

2

ˆ t

0

d⟨X,X⟩s
X2
s

.

Since Xs satisfies the EDS, we get the expression of dXs and we
have

d⟨X,X⟩s = u2
sX

2
s ds.

Finally, we have

lnXt =
ˆ t

0
us dBs −

1
2

ˆ t

0
u2
s ds.

□

We admit the following lemma.

Lemma IV.9 : Stochastic exponential and martingales

Let h ∈ L2(T ). Then E(h) is a square integrable martingale.

Finally, we introduce a third lemma we could use way much earlier in the introduction of the Wiener chaos. We
express it in a general way.

Lemma IV.10 : Density of exponentials

Let H a real separable Hilbert space, and X an isonormal process on H. Then, the set
{
eX(h), h ∈ H

}
is

dense in L2(Ω,F ,P), where F is the σ-algebra generated by X.

Proof of the lemma : Let G ∈ L2 such that

∀h ∈ H,E
[
GeX(h)

]
= 0.

Then by linearity of X, it means that for every integer n ∈ N∗,
t1, · · · , tn ∈ R and h1, · · · , hn ∈ H :

E

[
G exp

(
n∑

k=1

tkX(hk)

)]
= 0.

If we define the signed measure on B(Rn) :

ν(B) def.= E [G1B(X(h1), · · · , X(hn))] ,
then we can compute its Laplace transform. Indeed, if F is a step

function, we have :

ˆ

Rn
F dν = E [GF (X(h1), · · · , X(hn))] .

Since the exponential function can be uniformly approached by
step functions on Rd, and since ν is finite, we can conclude that we
have :

Lν(t1, · · · , tn) = E

[
G exp

(
n∑

k=1

tkX(hk)

)]
= 0.

Meaning that ν is the null measure, by injectivity of the Laplace
transform for finite measure. Hence, G is orthogonal to F , and so
G = 0, since G is F-measurable. □

We can consequently prove the Itô’s representation theorem.

Proof : We set T = [0, 1]. Let G ∈ L2
0 (L2 and centered) such

that

∀u ∈ L2
a ,E
[
G

ˆ

T
ut dBt

]
= 0.

• If we prove that G = 0, then, since L2
0 is closed in L2, and since

the set

U def.=
{ˆ

T
ut dBt, u ∈ L2

a (Ω× T )
}

in included in L2
0, this would implies that the reciprocal inclusion

is also true : L2
0 = U .

• Since E(u)u ∈ L2
a , we have in fact

∀u ∈ L2
a ,E
[
G

ˆ

T
utE(u)t dBt

]
= 0.

But, by the previous lemma about stochastic exponential, this
implies that

∀u ∈ L2
a ,E [GE(u)1] = 0.

By the expression of the stochastic exponential, we get for all
h ∈ L2(T ) (every deterministic process is adapted) :

∀u ∈ L2
a ,E
[
G exp

(ˆ
T
ht dBt

)]
exp
(−1

2

ˆ

T
h2
t dt
)

= 0.

Finally, since X(h) =
´

T ht dBt, we have :

G ∈
{
eX(h), h ∈ L2(T )

}⊥
.

This set is dense in L2, by the previous lemma, so we proved that
G = 0. □

Corollary IV.2 : Conditional expectation of the Itô representation

Let F ∈ L2 and u ∈ L2(T × Ω) like previously. Then, for all t ∈ T ,

E[F |Ft] = E[F ] +
ˆ t

0
us dBs.
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IV.4.2 Skorohod integral as extension of Ito’s integration

Let H = L2(T,B, µ) like previously. We make the identification L2(Ω → H) ≃ L2(Ω × T ). We will simply call
the Skorohod integral of u the divergence of u : δ(u). We want to use the following notation :

δ(u) =
ˆ

T

ut dWt.

Until now, we did it in two cases : one with the Wiener integral for elements of L2(T ), and we did it with Itô
with elements of L2

a(Ω×T ), where here T ⊂ R+ is an interval. We want to do this for elements of D(δ) ⊂ L2(Ω×T ),
with a general T .

Proposition IV.6 : Extension of Itô integral

Let T ⊂ R+ a compact interval. Then, we have

L2
a(T × Ω) ⊂ D(δ),

and we have for every u ∈ L2
a :

δ(u) =
ˆ

T

ut dBt.

Proof : • Let us show first that L2
a ⊂ D(δ). Since D(δ) is closed

for the norm L2
a , it is enough to show that E0 ⊂ D(δ). By linearity,

it is enough to prove that if A ∈ F , with µ(A) < +∞ (µ is the
Lebesgue measure here), and F is A-measurable, then F1Ac ∈ D(δ).
First, if F ∈ D1,2, then we have already shown that F1A ∈ D(δ),
by computation with homogeneity up to a random constant, and we
have (the two expectations we have to check that they are finite are
indeed finite since u = 1A is deterministic) :

δ (F1A) = Fδ(1A) + ⟨DF,1Ac ⟩H.
Since F is FA-measurable, DF is almost everywhere equal to zero

on A, so the bracket is null. This proves the result on D1,2, so on S.
For F ∈ L2(P), we have by density of S, the existence of a se-

quence (Fn)n ∈ SN such that

E
[
|Fn − F |2

]
−−−−−→
n→+∞

0.

Moreover, we have by the computation on elements of D1,2 :

δ (Fn1Ac ) L2(P)−−−−−→
n→+∞

Fδ(1A) + ⟨DF,1Ac ⟩H.

By the proposition about a limit of elements of D(δ) belonging
or not in D(δ), we can conclude that F1Ac ∈ D(δ), with :

δ (F1Ac ) = Fδ(1A) + ⟨DF,1Ac ⟩H.
This proves that E0 ⊂ D(δ), and since D(δ) is closed for

E
[
´

T ·2 dt
]
, it proves that L2

a ⊂ D(δ).
• If we compute δ(u) for u ∈ E0 :

u =
n∑

j=1

Zj1]tj ,tj+1],

with Zj which is Ftj -measurable. We have u ∈ D(δ). By homo-
geneity up to a random constant :

δ
(
Fj1]tj ,tj+1]

)
= Fjδ

(
1]tj ,tj+1]

)
−
ˆ

T
DtFj1]tj ,tj+1](t) dt.

But, since Fj is Ftj -measurable, DF = 0 almost everywhere on
]tj , tj+1]. And by computation on simple elements :

δ
(

1]tj ,tj+1]
)

= X
(

1]tj ,tj+1]
)

= Btj+1 −Btj .
By linearity, we get the result for every process u ∈ E0.
• Let u ∈ L2

a . Then, using the operator Pn defined previously,
and by Itô’s isometry :

E

[∣∣∣
ˆ

T
(ut − Pnut) dBt

∣∣∣
2
]

= ∥u− Pnu∥L2
a
,

which goes to zero when [n → +∞]. Moreover, this also means
by (i) that

δ(Pnu) L2
−−−−−→
n→+∞

ˆ

T
ut dBt.

Since δ is closed, this finally means that :

δ(u) =
ˆ

T
ut dBt.

δ coincides with the Itô integral. □

Notice that we note "dBt" to show that this integral is in the Itô’s way. Since the Wiener integral and the Itô
integral coincides, and since

∀h ∈ H, δ(h) = X(h) =
ˆ

T

ht dWt,

we will note δ(u) =
´

T
ut dWt, and not dBt for general elements of D(δ).
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Definition IV.7
Let u ∈ L2(Ω × T ). We say that u is Skorohod integrable if u ∈ D(δ). In this case, we note

ˆ

T

ut dWt
def.= δ(u).

Proposition IV.7 : Clark-Ocone representation formula

Let F ∈ D1,2, T an interval of R+, an B a (Ft)t-Brownian motion. Then,

F = E[F ] +
ˆ

T

E [DtF |Ft] dBt.

Proof : Two proves are possible, let us make both.
1. We know by Itô’s representation theorem that there is an unique

(in L2) u ∈ L2
a such that

F = E[F ] +
ˆ

T
ut dWt.

We just need to show that ut = E[DtF |Ft]. To do this, we show
that the difference belongs to L2

a ∩L2
a

⊥. Let v ∈ L2
a . Then, v ∈ D(δ).

By definition of δ by duality, we have

E[Fδ(v)] =
ˆ

T
E[vtDtF ] dt.

But, since v ∈ L2
a , since E[δ(v)], we also have :

E[Fδ(v)] = E
[(ˆ

T
vt dBt

)(ˆ
T
ut dBt

)]
.

By Itô’s isometry, we have finally :
ˆ

T
E[vtDtF ] dt =

ˆ

T
E[vtut] dBt.

But, since vt is Ft-measurable, we can write it as :
ˆ

T
E[vtE[DtF |Ft]] dt =

ˆ

T
E[vtut] dBt.

And since E[D•F |F•]] ∈ L2
a (T × Ω), this means that we proved

that the difference with u is in L2
a

⊥, so is zero. This concludes the
proof.

2. We expend F in Wiener chaos, and compute the expansion of
every member of the expected equality :

F =
+∞∑

n=0

In(fn),

with I0(f0) = E[F ], and (fn)n symmetric. Then, we have

DtF =
+∞∑

n=1

nIn−1(fn(·, t)).

And by the lemma III.4 computing the Wiener chaos expansion
of a conditional expectation, we get :

E[DtF |Ft] =
+∞∑

n=1

nIn−1

(
fn(·, t)1⊗(n−1)

[0,t]

)
.

Since (E[DtF |Ft])t⩾0 ∈ L2
a , we can compute the divergence of

it in terms of Itô’s integral :

δ
(

(E [DtF |Ft])t⩾0
)

=
ˆ

T
E [DtF |Ft] dBt.

And since we have the Wiener chaos expansion of E[DtF |Ft], we
can compute the one of its divergence. Let us call

gn(t1, · · · , tn, t) def.= (n+ 1)fn+1(t1, . . . , tn, t)1⊗n
[0,t](t1, · · · , tn).

Then, if we compute its symmetrization, we have :

g̃n(t1, · · · , tn, t) =
= fn+1(t1, . . . , tn, t)

·

(
1⊗n

[0,t](t1, · · · , tn) +
n∑

k=1

1⊗n
[0,tk](t1, · · · , t, · · · tn)

)
.

But, the sum in parenthesis is equal almost surely in Tn+1 to 1.
Indeed, if we note tn+1 = t, then there exists k0 such that tk0 is the
biggest of the tk. Then, the term in k = k0 is equal to one, and the
others are equal to zero unless tk0 is not unique, but the set of Rn+1

such that at least two coordinates are equal is negligible. Hence, we
have almost every where g̃n = fn+1 and we get exactly :

δ
(

(E [DtF |Ft])t⩾0
)

=
+∞∑

n=1

In(fn),

which is F − E[F ]. □

V Ornstein-Ulhenbeck operator

Definition V.1
We define (Pt)t as the following : for all F ∈ L2(P) and t ⩾ 0 :

PtF
def.=

+∞∑

p=0
e−ptJpF.
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V.1 Melher’s formula
Hence, Pt : L2(P) −→ L2(P). We could define a closer definition of this operator from the one-dimensional case.

Proposition V.1 : Melher’s formula

Let X ′ an another Gaussian isonormal process with values in H, with values in L2(Ω′,F ′,P′). Then, for all
F ∈ L2(P), there exists a measurable map ψF : RH −→ R such that ψF (X) = F and

PtF = E′
[
ψF

(
e−tX +

√
1 − e−2tX ′

)]
.

Proposition V.2 : Contraction

The operator Pt : Lq −→ Lq is a contraction :

∀F ∈ Lq,E [|PtF |q] ⩽ E [|F |q] .

Proof : We use Jensen inequality, like in section I.

E[|PtF |q ] ⩽ E
[
E′
[∣∣∣ψF

(
e−tX +

√
1− e−2tX′

)∣∣∣
q]]

.

Since e−tX +
√

1− e−2tX′ as the same law (as processes, so if
we look at finite dimensional laws), we have

E[|PtF |q ] ⩽ E
[
E′ [|ψF (X)|q ]

]
.

That is, since ψF (X) = F :

E[|PtF |q ] ⩽ E [|F |q ] .

□

V.2 Infinitesimal generator

Definition V.2
We define the unbounded operator (L,D(L)) as follows :

D(L) def.=
{
F ∈ L2(P),

+∞∑

n=0
n2E[(JnF )2] < +∞

}
,

and for all F ∈ D(L), we define on L2 :

LF
def.= −

+∞∑

n=0
nJnF.

Proposition V.3 : Generator of the Ornstein-Uhlebeck semi-group

The operator (L,D(L)) is the infinitesimal generator of (Pt)t, that is :

D(L) =
{
F ∈ L2,∃G ∈ L2,E

[∣∣∣∣
PtF − F

t
−G

∣∣∣∣
2
]

−−−−→
t→0+

0
}
,

and for all F ∈ D(L), we have in L2 :

LF = lim
t→0

PtF − F

t
.

Proof : [=⇒] Let F ∈ L2 such that
∑

n
n2E[JnF 2] converges.

Let us show that

E

[∣∣∣PtF − F
t

− LF
∣∣∣
2
]
−−−→
t→0

0.

By the definitions with the series, and by expanding F in Wiener
chaos, we have :

E

[∣∣∣PtF − F
t

− LF
∣∣∣
2
]

=
+∞∑

p=0

∣∣∣∣
e−pt − 1

t
+ p

∣∣∣∣
2

E[JpF 2].

But, we have the following domination, for all p ∈ N and t ⩾ 0 :
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∣∣∣∣
e−pt − 1

t
+ p

∣∣∣∣
2

E[JpF 2] ⩽ 4p2E[JpF 2].

By dominated convergence, we have the expected convergence,
and so we proved the inclusion between the definition of L, and the
generator of Pt.

[⇐=] Conversely, we suppose that F ∈ L2 satisfies that there
exists G ∈ L2 such that

E

[∣∣∣PtF − F
t

−G
∣∣∣
2
]
−−−−→
t→0+

0.

We show that
∑

n
n2E[JnF 2] converges and that G = LF , in

the sense of the definition. First, by continuity of Jn on L2, and li-
nearity, we have in L2 :

JnG = lim
t→0+

JnPtF − JnF
t

.

By definition of Pt and unicity of Wiener chaos expansion, we
have

JnPtF = e−ntJnF (= PtJnF ).
Consequently, we have :

JnG = lim
t→0+

e−nt − 1
t

JnF.

So :

JnG = −nJnF.
We deduce that

+∞∑

n=0

n2E[JnF 2] =
+∞∑

n=0

E[JnG2] = E[G2] < +∞.

Moreover, in L2 :

LF = −
+∞∑

p=0

pJpF =
+∞∑

p=0

JpG = G.

We have proven the other inclusion. □

Corollary V.1 : Derivative of Pt

Let F ∈ D(L). Then for all t ⩾ 0 :

dPtF

dt = LPtF = PtLF.

We will show an important relation between the last operators we introduced. We have already seen it in the
one-dimensional case, and saw some applications.

Theorem V.1 : Relation between L, δ and D

We set H = L2(T,B, µ). Let F ∈ L2. Then, F ∈ D(L) if and only if F ∈ D1,2 and DF ∈ D(δ). In this case,

δDF = −LF.

The theorem is still true for real separable Hilbert space H, the choice of L2(µ) is to complete the proof.

Proof : [=⇒] Let us suppose that F ∈ D(L), meaning that∑
n
n2E[JnF 2] converges. Then, the series

∑
n
nE[JnF 2] converges

too, and so F ∈ D1,2, by the series characterization. Let us show that
DF ∈ D(δ), by using this time the definition. Let G ∈ D1,2. Then by
using the expansion of DF and DG in Wiener chaos,

E [⟨DG,DF ⟩] =
+∞∑

n=1

n2
ˆ

T
⟨g̃n(·, t), f̃n(·, t)⟩L2(Tn−1) dµ(t).

Hence,

E [⟨DG,DF ⟩] =
+∞∑

n=1

n2⟨g̃n, f̃n⟩L2(Tn).

It yields to

E [⟨DG,DF ⟩] =
+∞∑

n=1

nE [JnFJnG] .

We conclude by Cauchy-Schwarz inequality that :

∣∣E [⟨DG,DF ⟩]
∣∣ ⩽
(

+∞∑

n=1

n2E
[
JnF

2
]
) 1

2

E
[
G2
] 1

2 .

And so, DF ∈ D(δ).

[⇐=] We suppose that F ∈ D1,2 and DF ∈ D(δ). Let us show
that Jn(δDF ) = nJnF for every n ∈ N. To do that, we consider
G ∈ Hn. Then,

E[G δDF ] = E[⟨DG,DF ⟩].
By the lemma IV.5 about projection on Wiener chaos of the di-

vergence, since the Wiener chaos expansion of DtF is

DtF =
+∞∑

n=1

nIn−1(fn(·, t)),

we have :

E[G δDF ] = E[GIn(fn)].
And so, we have Jn(δDF ) = nJnF . It means that :

+∞∑

n=0

n2E[JnF 2] = E[(δDF )2] < +∞,

so, that F ∈ D(L) and moreover that

δDF =
+∞∑

n=0

nJnF = −LF.

□
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Proposition V.4 : An expression of L for smooth random variables

Let F ∈ S, given by F = f(X(h1), · · · , f(X(hn)). Then, F ∈ D(L) and :

LF =
n∑

i,j=1

∂2f

∂xi∂xj
(X(h1), · · · , X(hn))⟨hi, hj⟩ −

n∑

i=1

∂f

∂xi
(X(h1), · · · , X(hn))X(hi).

Proof : We use the expression we just proved. For F ∈ S, the
derivative is given by :

DF =
n∑

i=1

∂f

∂xi
(X(h1), · · · , X(hn))hi.

We just need to compute the divergence of it. We use the com-
putation of δ(Fu) done in a previous proposition. It gives here

δ

(
∂f

∂xi
(X(h1), · · · , X(hn))hi

)

= ∂f

∂xi
(X(h1), · · · , X(hn))δ(hi)

−
〈

D ∂f

∂xi
(X(h1), · · · , X(hn)), hi

〉
H
.

Since δ(hi) = X(hi) (computation on simple elements), and since

D ∂f

∂xi
(X(h1), · · · , X(hn)) =

n∑

j=1

∂2f

∂xj∂xi
(X(h1), · · · , X(hn))hj ,

we conclude on the equality by linearity. □

V.3 Pseudo inverse and integration by parts formula

Definition V.3
Let F ∈ L2(P). We define the pseudo inverse of the operator L by :

L−1F
def.= −

+∞∑

p=1

1
p
JpF.

Proposition V.5 : PSEUDO inverse

Let F ∈ L2(P). Then L−1F ∈ D(L) and

LL−1F = F − E[F ].

Proof : By definition,

JpL
−1F = −1

p
JpF.

Hence,

p2E
[
JpL

−1F 2
]

= E[JpF 2]

defines a general term of a convergent series, so L−1F ∈ D(L).
Moreover,

L(L−1F ) = −
+∞∑

p=0

pJp(L−1F ) =
+∞∑

p=1

JpF.

So LL−1F = F − E[F ]. □

We derive here an another integration by parts formula, which is not the same as the previous with the divergence.

Proposition V.6 : Integration by parts formula with the pseudo inverse

Let F,G ∈ D1,2 and g ∈ C1
b (R). Then

E[Fg(G)] = E[F ]E[g(G)] − E
[
g′(G)⟨DG,DL−1F ⟩H

]
.

Proof : We use the previous property. We have

E [(F − E[F ])g(G)] = E[LL−1F · g(G)].

We use L = −δD :

E [(F − E[F ])g(G)] = −E[δD(L−1F ) · g(G)].
By duality :

E [(F − E[F ])g(G)] = −E
[
⟨D(L−1F ),Dg(G)⟩H

]
.
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Finally, by chain rule on C1
b functions :

E [(F − E[F ])g(G)] = −E
[
g′(G)⟨D(L−1F ),DG⟩H

]
.

This concludes the proof. □

As an application, we will prove the following theorem about the law of a random variable living in a set Wiener
chaos. We prove it for H = L2(T ).

Theorem V.2 : Absolute continuity with respect to Lebesgue measure in Wiener chaos

Let q ∈ N∗, f ∈ L2
S(T q) and F = Iq(f). If ∥f∥L2(T q) > 0, then F admits a law which is absolutely continuous

with respect to the Lebesgue measure.

Proof : We proceed by induction on q. For q = 1, I1(f) ∼
N
(

0, ∥f∥L2
)

, so the initialisation is true. Let q ∈ N∗. We suppose
that for every g ∈ L2

S(T q) non equal to zero almost surely, the ran-
dom variable Iq(g) admits a density with respect to the Lebesgue
measure. We want to prove it for the rank q + 1. Let F = Iq+1(f),
with f ∈ L2

S(T q+1) non equal to zero. The idea is to use DF which
belongs to the previous chaos to use the induction hypothesis. Here’s
the plan.

1. Let t1, · · · , tq ∈ T and

g = gt1,··· ,tq
def.= f(t1, ·, tq , ·) ∈ L2

S(T ).
Then there exists h ∈ H such that ⟨g, h⟩H ̸= 0 and so

P
(
∥DF∥H = 0

)
= 0.

2. Let B ∈ B(R). Then for all n ∈ N∗ :

1
q + 1

E
[
1B∩[−n,n](F )∥DF∥2

H
]

= E

[
F

ˆ F

−∞
1B∩[−n,n](y) dy

]
.

3. We moreover suppose that λ(B) = 0. Then P(F ∈ B) = 0,
meaning that the law of F is absolutely continuous with respect to
the Lebesgue measure.

Let us begin.
1. We set t1, . . . , tq ∈ T and simply denote for now g = gt1,··· ,tq .

We suppose that for every h ∈ H, ⟨g, h⟩H = 0. Let (ei)i an ortho-
normal basis of H. We decompose f , and so g :

f =
+∞∑

j1,··· ,jq=1

+∞∑

jq+1=1

aj1,··· ,jq+1ej1 ⊗ · · · ⊗ ejq+1 .

Hence,

g =
+∞∑

jq+1=1




+∞∑

j1,··· ,jq=1

a+∞
j1,··· ,jq=1ej1 (t1) · · · ejq (tq)


 ejq+1 .

And we have the following expression for ⟨g, h⟩ :

⟨g, h⟩H

=
+∞∑

jq+1=1




+∞∑

j1,··· ,jq=1

aj1,··· ,jqej1 (t1) · · · ejq (tq)


 ⟨ejq+1 , h⟩H.

Now, let us note

φ : (t1, · · · , tq) 7−→ ⟨gt1,··· ,tq , h⟩H.
By hypothesis, φ is the zero map, so belongs to L2(T q). More

over, we have the decomposition of φ in the orthogonal basis (ei)i :

φ =
+∞∑

j1,··· ,jq=1




+∞∑

jq+1=1

aj1,··· ,jq ⟨ejq+1 , h⟩H


 ej1 ⊗ · · · ⊗ ejq .

So we can take the norm of it, and use the fact that it is equal to
zero :

0 =
+∞∑

j1,··· ,jq=1




+∞∑

jq+1=1

aj1,··· ,jq ⟨ejq+1 , h⟩H




2

.

If we take h = ek, then all the sum is zero except for the term in
jq+1 = k :

∀k ∈ N∗, aj1,··· ,jq,k = 0.
By symmetry of the function f , it means that all the coefficients

aj1,··· ,jq+1 are zero, and so f = 0, which is excluded by hypothe-
sis. Hence, we concluded that there exists h ∈ H such that for all
t1, · · · , tq ∈ T :

⟨gt1,··· ,tq , h⟩H ̸= 0.
It means, if we note φ like before that ∥φ∥L2(Tq) > 0. By induc-

tion hypothesis, it means that

L (Iq(φ))≪ λ.

But, since F = Iq+1(f), we have for all t ∈ T :

DtF = (q + 1)Iq(f(t, ·)).
Hence, since f(t, ·) =

{
(t1, · · · , tq) 7−→ gt1,··· ,tq (t)

}
, we have

almost surely :

⟨DF, h⟩ = φ.

Hence,

P (⟨DF, h⟩H = 0) = P(φ = 0) = 0,
since Pφ ≪ λ. Since

{
∥DF∥H = 0

}
⊂ {⟨DF, h⟩H = 0} ,

we finally proved that

P
(
∥DF∥H = 0

)
= 0.

2. Let B ∈ B(R). We set n ∈ N∗. We want to prove that

1
q + 1

E
[
1B∩[−n,n](F )∥DF∥2

H
] (∗)

= E

[
ˆ F

−∞
1B∩[−n,n](z) dz

]
.

We use a Dynkin argument. Indeed, the set

{B ∈ B(R), (∗) is true}
is Dynkin system (∅ belongs to this set, it is stable by difference,

and increasing limit by property of indicator functions). We just need
to prove it for B =] − ∞, a], with a ∈ R. The idea is to use the
integration by part formula we just derive for the map, for all n ∈ N∗ :

x 7−→
ˆ x

−∞
1B∩[−n,n](y) dy,

which is bounded by 2n, but not C1 (only Lipschitz). To avoid
this problem, we approach 1]−∞,a]∩[−n,n] by linear interpolation. For
n ⩽ |a|, we define φε as :
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•
−n− ε

•
n+ ε

φε

•−n

1B∩[−n,n]

•
n

•
a

And we define for |a| ⩽ n :

•
−n− ε

•
a+ ε

φε

•−n

1B∩[−n,n]

•
a

•
n

We drew it for a ⩾ 0, but we define φε symmetrically for a ⩽ 0.
Then, φε converges pointwise to 1B∩[−n,n], is bounded by 1 and has
its support included in [−n − ε, n + ε]. Since φε is continuous, the
integration by parts formula for

´ •
−∞ φε gives

E
[
φε(F )

〈
DF,−DL−1F

〉
H

]
= E

[
F

ˆ F

∞
φε(z) dz

]
.

But, since F = Iq+1(f), we have L−1F = −F
q+1 , so we have :

1
q + 1

E
[
φε(F )∥DF∥2

H
]

= E

[
F

ˆ F

−∞
φε(z) dz

]
.

So, by letting [ε→ 0+] (we can do it by dominated convergence,
φε has its support included in [−2n, 2n] for ε small enough), we get :

1
q + 1

E
[
1[−n,n]∩B(F )∥DF∥2

H
]

= E

[
F

ˆ F

−∞
1[−n,n]∩B(z) dz

]
.

We proved (∗) for every B =] − ∞, a], with a ∈ R. Since the
σ-algebra generated by those intervals is exactly B(R), we conclude
by Dynkin lemma that (∗) is true for every B ∈ B(R).

3. We suppose than λ(B) = 0. We want to prove that PF (B) =
P(F ∈ B) = 0. By hypothesis, for every interval I ⊂ R,

´

I 1B dλ = 0.
Since λ(B) = 0, it means that

1
q + 1

E
[
1[−n,n]∩B(F )∥DF∥2

H
]

= 0.

Since the left hand side is the expectation of a positive quantity,
it means that P-almost surely, we have

1[−n,n]∩B(F )∥DF∥2
H = 0.

By the previous point, P
(
∥DF∥H > 0

)
= 1, meaning that P-

almost surely, we have 1[−n,n]∩B(F ) = 0, so by taking the expecta-
tion :

∀n ∈ N,P(F ∈ B ∩ [−n, n]) = 0.

By increasing property of the probability, we conclude that P(F ∈
B) = 0. This shows that PF is indeed absolutely continuous with
respect to the Lebesgue measure. □

V.4 Nelson’s hypercontractivity
V.4.1 Statement

Theorem V.3 : Hypercontractivity

Let F ∈ Lp, for p > 1 and let q(t) = 1 + e2t(p− 1). Then,

E [|PtF |q]
1
q ⩽ E [|F |p]

1
p .

V.4.2 Equivalence of the norms in Wiener chaos

A very important corollary is the following.

Corollary V.2 : Equivalence of the norms
Let F ∈ Hp and 1 < q < r. Then,

E [|F |q]
1
q ⩽ E [|F |r]

1
r ⩽

(
r − 1
q − 1

) p
2

E [|F |q]
1
q .

All the Lq-norms are equivalents in every Wiener chaos.

Proof : The first inequality is well known, it is an application of
Jensen inequality. For the second inequality, we use Nelson hypercon-
tractivity (in Lq) : let t ⩾ 0 such that

r = 1 + e2t(q − 1).

Then,

E [|PtF |r]
1
r ⩽ E [|F |q ]

1
q .

But, by definition of the Ornstein-Ulhenbeck operator, we have,
since F ∈ Hp :

PtF = e−ptF.

We finally have

E [|F |r]
1
r ⩽ eptE [|F |q ]

1
q ,

giving the expected inequality. □
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VI Applications
VI.1 Poincaré inequality

We begin by a generalization of we saw in the one dimensional case.

Proposition VI.1 : Poincaré inequality

Let F ∈ D1,2. Then,

Var(F ) ⩽ E
[
∥DF∥2

H

]
.

Proof : We will prove it in two ways, one copying the case where
Ω = R we treated in section I, and another using explicitly the Mal-
liavin derivative, and its Wiener decomposition.

1. The idea is to use the operators δ, L and D, by observing that
for all F ∈ L2,

P0F = F and P∞F = E[F ].
The last equality can be shown using dominated convergence. Let

us see the variance of F like an expectation of a product :

Var(F ) = E [F (F − E[F ])] .
We see then an increment of (Pt)t :

Var(F ) = E [F (P0F − P∞F )] .
And so we can express it as an integral :

Var(F ) = −E
[
F

ˆ +∞

0

dPtF
dt

dt
]
.

But, since PtF =
∑+∞

n=0 e
−ntJnF , we have in fact

dPtF
dt

= LPtF.

So, we have :

Var(F ) = −E
[
F

ˆ +∞

0
LPtF dt

]
.

Since L = −δD :

Var(F ) = E

[
F

ˆ +∞

0
δDPtF dt

]
.

We switch integrals :

Var(F ) =
ˆ +∞

0
E [FδDPtF ] dt.

By duality :

Var(F ) =
ˆ +∞

0
E [⟨DF,DPtF ⟩H] dt.

Using the Wiener chaos expansion, we have DPtF = e−tPtDF .
So, by Cauchy-Schwarz, we have :

Var(F ) ⩽
ˆ +∞

0
e−tE

[
∥DF∥H∥PtDF∥H

]
dt.

And by Cauchy-Schwarz once again :

Var(F ) ⩽
ˆ +∞

0
e−tE

[
∥DF∥2

H
] 1

2 E
[
∥PtDF∥2

H
] 1

2 dt.

By contraction property of Pt (here on H) :

Var(F ) ⩽
ˆ +∞

0
e−tE

[
∥DF∥2

H
]

dt = E
[
∥DF∥2

H
]
.

And here is our inequality.
2. This proof is quicker but is more difficult, since it uses non

elementary tools. We expend F in Wiener chaos :

F − E[F ] =
+∞∑

p=1

JpF.

So,

Var(F ) =
+∞∑

p=1

E[JpF 2].

And now, the result is immediate by the theorem about the cha-
racterization of D1,2 in terms of convergence of a series :

Var(F ) ⩽
+∞∑

p=1

pE[JpF 2] = E
[
∥DF∥2

H
]
.

The inequality is proved. □

VI.2 Variance expansions
We set here H = L2(T,B, µ) with µ a non atomic measure.

Proposition VI.2 : Variance expansions for D∞,2 variables

Let F ∈ D∞,2 =
⋂

p⩾1 Dp,2.
i. We have the following expansion :

Var(F ) =
+∞∑

p=1

∥E [DpF ]∥2
L2(Tp)

p! .

58 Jérémy Zurcher



M2 Part I - Malliavin calculus

ii. If we suppose moreover that

E
[
∥DpF∥2

L2(Tp)

]

p! −−−−−→
p→+∞

0,

then we have the following expansion :

Var(F ) =
+∞∑

p=1

(−1)p+1E
[
∥DpF∥2

L2(Tp)

]

p! .

Proof : We do the same proof as the case where Ω = R and
P = γ.

i. We use a corollary we proves in section III about Malliavin de-
rivative. More precisely, we proves that if F ∈ D∞,2 then

F = E[F ] +
+∞∑

n=1

In (E [DnF ])
n!

.

So, by taking the expectation of it :

E[F 2] = E[F ]2 +
+∞∑

n=1

n!∥E [DnF ]∥2
L2(Tn)

(n!)2 ,

which exactly what we expected.
ii. We introduce

g(t) def.= E

[(
P− ln t

2
F

)2
]
.

1. Let us show that for all p ∈ N :

g(p)(t) = E

[∥∥∥P− ln t
2

DpF
∥∥∥

2

L2(Tp)

]
.

To do this, we just need to treat the case p = 1, the higher cases
would be identical. By differentiating a composition of functions :

g′(t) = −1
t

E
[
P− ln t

2
F LP− ln t

2
F

]
.

Since L = −δD :

g′(t) = 1
t
E
[
P− ln t

2
F δDP− ln t

2
F

]
.

By duality :

g′(t) = 1
t
E

[∥∥∥DP− ln t
2

F

∥∥∥
2

L2(T )

]
.

Finally, we have DPt = e−tPtD, so :

g′(t) = E

[∥∥∥P− ln t
2

DF
∥∥∥

2

L2(T )

]
.

2. Notice that we can extend g on [0, 1] with

g(0) = E[F ]2 and g(1) = E[F 2].
By Taylor formula with integral reminder around 1, we have for

all N ∈ N∗, since

g(p)(1) = E
[
∥DpF∥2

L2(Tp)
]
,

we get :

g(0)− g(1) =
N∑

p=0

(−1)pE
[
∥DpF∥2

L2(Tp)
]

p!

+ (−1)N
ˆ 1

0

tN

N !
g(N+1)(t) dt.

Since by contraction property, we have

∣∣∣∣
ˆ 1

0

tN

n!
g(p+1)(t) dt

∣∣∣∣ ⩽
E
[∥∥DN+1F

∥∥2
L2(TN+1)

]

(N + 1)!
.

This goes to zero by hypothesis. So, we concludes in our expansion
ii..

Note : Same remark as the one-dimensional case. We could have
proved our expansion (i) by using this method and expanding in 0.
Nevertheless, it uses the hypothesis formulated in ii. we don’t need to
suppose for i.. □
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I Stein’s method for one-dimensional normal approximation
I.1 Stein’s lemma and Stein’s equation

We want to quantify how far a law is far from the normal distribution. To do this, we use this characterization
of the Gaussian normal distribution.

Lemma I.1 : Stein’s lemma
Let N a real random variable. The following assertions are equivalents :

(i) N follows the law N (0, 1) ;
(ii) For all differentiable f : R −→ R such that f ′ ∈ L1(γ), we have E[|f ′(N)|],E[|Nf(N)|] < +∞ and

E[Nf(N)] = E[f ′(N)].

Proof of the lemma : [=⇒] We suppose N ∼ N (0, 1). Let
f : R −→ R differentiable such that f ′ ∈ L1(γ). Since E[N ] = 0, we
can suppose that f(0) = 0. Then, immediately, E[|f ′(N)|] < +∞.
Moreover,

E [|Nf(N)|] =
ˆ

R
|xf(x)| dγ(x).

We write f as the integral of its derivative. In order to use triangu-
lar inequality, we have to be careful with the bounds of the integrals :

E [|Nf(N)|]
⩽

ˆ +∞

0
x

(ˆ x
0

∣∣f ′(t)
∣∣ dt
)

dγ(x)

−
ˆ 0

−∞
x

(
ˆ −x

0

∣∣f ′(t)
∣∣ dt
)

dγ(x)

.

By performing x ← −x in the second integral, we get that the
second integral in equal to the first :

E [|Nf(N)|] ⩽ 2
ˆ +∞

0
x

(ˆ x
0

∣∣f ′(t)
∣∣ dt
)

dγ(x).

By Fubini’s theorem :

E [|Nf(N)|] ⩽ 2
ˆ +∞

0
|f ′(t)|

(
ˆ +∞

t
x dγ(x)

)
dt.

Finally, since this integral can be computed, we have :

E [|Nf(N)|] ⩽ 2
ˆ +∞

0
|f ′(t)| dγ(t).

So,

E [|Nf(N)|] ⩽ 2E[|f ′(N)|] < +∞.
Finally, we show that E[Nf(N)] = E[f ′(N)]. This is again a Fu-

bini’s theorem which allows us to conclude (an integration by parts
cannot be done, we don’t know how f(t)e

−t2
2 behave on ±∞). We

have :
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ˆ

R
xf(x) dγ(x)

=
ˆ +∞

0

ˆ

R
10⩽t⩽xxf ′(t) dt dγ(x)

−
ˆ 0

−∞

ˆ

R
1x⩽t⩽0xf

′(t) dt dγ(x).

We switch, and use the fact, once again, that
´+∞
t x dγ(x) =

e
−t2

2 to conclude :
ˆ

R
xf(x) dγ(x) =

ˆ

R
f ′(t) dγ(t).

That is the wanted equality.
[⇐=] Suppose that the real random variable N satisfies the condi-

tion (ii). There are two ways to prove the reciprocal sens.
1. For f(x) = xn, we have :

E[Nn+1] = nE[Nn−1].
Since for f(x) = 1, we have E[N ] = 0, and f(x) = x, E[N2] = 1,

it means that N admits moments at every order, and by the induction
relation, N admits the exact same moments as a Gaussian N (0, 1).
We just have to show that it means that N follows N (0, 1). To do
this, we compute the characteristic function of N . By Fubini,

E
[
eitN

]
=

+∞∑

n=0

i2nt2n

(2n)!
(2n)!
2nn!

.

This leads to

E
[
eitN

]
=

+∞∑

n=0

(-1)nt2n

2nn!
= e

−t2
2 .

By Lévy’s theorem, N ∼ N (0, 1).
2. Let us show that the characteristic function of N is the one of

N (0, 1) by getting a differential equation. Let t ∈ R. For f = cos(t·),
then E[|f ′(N)|] < +∞ and we have :

tE[sin tN ] = −E[N cos tN ]
Same for f = sin(t·) :

tE[cos tN ] = E[N sin tN ]
Hence,

tE
[
eitN

]
= E [N (sin tN − i cos(tN))] = −E

[
iNeitN

]
.

Since N ∈ L1 (by taking f(x) = 1), we have, with φN the
characteristic function of N :

φ′
N (t) = iE

[
NeitN

]
.

Finally, we get the differential equation :

φ′
N (t) = −tφN (t)

with initial value equal to 1, so we have

φN (t) = e
−t2

2 ,

meaning that N ∼ N (0, 1). □

Corollary I.1 : Stein’s lemma for general Gaussian

Let N ∈ L2, µ ∈ R and σ2 > 0. Then the following assertions are equivalents :
(i) N follows the law N (µ, σ2) ;

(ii) For all differentiable f : R −→ R such that E[|f ′(N)|] is finite, then E
[∣∣∣N−µ

σ2 f(N)
∣∣∣
]
< +∞ and

E [f ′(N)] = E
[
N − µ

σ2 f(N)
]
.

Proof : [=⇒] We suppose that N ∼ N (µ, σ2). Let Z = N−µ
σ
∼

N (0, 1). Then by Setin’s lemma, for all g : R −→ R such that
E[|g′(Z)|] < +∞, we have E[|Zg(Z)|] < +∞ and

E[g′(Z)] = E[Zg(Z)].
Let f : R −→ R derivable such that E[|f ′(N)|] < +∞. We define

g(z) def.= f (σz + µ) .
Then g is derivable, with g′(z) = σf ′(σz + µ) and

E
[
|g′(Z)|

]
= σE[|f ′(N)|] < +∞.

Hence, we have E[|Zg(Z)|] < +∞, so :

E [|Zg(Z)|] = E
[∣∣∣N − µ

σ
f(N)

∣∣∣
]
< +∞,

and we also have

E[g′(Z)] = E[Zg(Z)].
It rewrites here as :

σE[f ′(N)] = E
[
N − µ
σ

f ′(N)
]
.

This concludes the direct implication.
[⇐=] Same idea as the direct implication. We define Z as the

direct implication. Let us show that for every g : R −→ R derivable
such that E[|g′(Z)|] < +∞ then E[|Zg(Z)|] < +∞ and

E[Zg(Z)] = E[g′(Z)].
This would implies that Z ∼ N (0, 1) by Stein’s lemma, and so

that N ∼ N (µ, σ2). Let g derivable with g′(Z) ∈ L1. We define like
before

f(x) def.= g

(
x− µ
σ

)
.

Then f(N) = g(Z), f ′(x) = 1
σ
g′
(
x−µ
σ

)
. So, E[|f ′(N)|] < +∞,

and by hypothesis, it means that

E
[∣∣∣N − µ

σ2 f(N)
∣∣∣
]
< +∞.

So, we have

E [|Zg(Z)|] = σE
[∣∣∣N − µ

σ2 f(N)
∣∣∣
]
< +∞.

Finally, by hypothesis, we have

E
[
f ′(N)

]
= E
[
N − µ
σ2 f(N)

]
.

In terms of g, it means that

1
σ
E
[
g′(Z)

]
= 1
σ
E [Zg(Z)] .

So Z ∼ N (0, 1), and N ∼ N (µ, σ2). □
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Corollary I.2 : A first step to multi dimensional Stein’s lemma

Let C ∈ S+
d (R) and N = (N1, · · · , Nd) ∼ N (0, C). Then, for all f ∈ C1

b (Rd) and for all i ∈ J1, dK :

E [Nif(N1, · · · , Nd)] =
d∑

j=1
Ci,jE

[
∂f

∂xj
(N1, · · · , Nd)

]
.

Proof : 1. We do first the case where C is diagonal. We note
λ1, · · · , λd the diagonal entries of the matrix. Then (N1, · · · , Nd) are
mutually independent. So :

E [Nif(N1, · · · , Nd)]

=
ˆ

Rd−1
E [Nif(x1, · · · , Ni, . . . , xd)]

∏

j ̸=i

e

−x2
j

2λj√
λj

d̂xi√
(2π)d−1

.

Where d̂xi means the product of dxj without the the term dxi.
By Stein’s lemma in the one-dimensional case, we get :

E [Nif(N1, · · · , Nd)]
= λi

ˆ

Rd−1
E
[
∂f

∂xi
(x1, · · · , Ni, . . . , xd)

]

·
∏

j ̸=i

e

−x2
j

2λj√
λj

d̂xi√
(2π)d−1

.

And so

E [Nif(N1, · · · , Nd)] = λiE
[
∂f

∂xi
(N1, · · · , Nd)

]
.

2. In general case, we diagonalize C = ODtO, with O ∈ Od(R).
We have

E[Nif(N)] =
ˆ

Rd
xif(x)e

−1
2 ⟨x,C−1x⟩ dx√

(2π)d det(C)
.

We have

⟨x,C−1x⟩ = ⟨O−1x,D−1O−1x⟩.
We set the change of variables y = O−1x. We note ωi,j the

entries of the matrix O. We set g = f ◦O−1.

E[Nif(N)] =
d∑

j=1

ωi,j

ˆ

Rd
yjg(y)e

−1
2 ⟨y,D−1y⟩ dy√

(2π)d det(D)
.

Then, by the diagonal case, the integral gives :

E[Nif(N)]

=
d∑

j=1

ωi,jλj

ˆ

Rd
∂g

∂yj
(y)e

−1
2 ⟨y,D−1y⟩ dy√

(2π)d det(D)
.

Hence, we are in the situation :

E[Nif(N)] =
ˆ

Rd
[OD∇g(y)]i e

−1
2 ⟨y,D−1y⟩ dy√

(2π)d det(D)
.

Since OD = CO, we have :

E[Nif(N)] =
ˆ

Rd
[CO∇g(y)]i e

−1
2 ⟨y,D−1y⟩ dy√

(2π)d det(D)
.

We have by differentiation of composed functions :

∇f(x) = O∇g(y)

Hence, by using again the change of variable x = Oy, we have :

E[Nif(N)] =
ˆ

Rd
[C∇f(x)]i e

−1
2 ⟨x,C−1x⟩ dx√

(2π)d det(C)
.

And so we proved that

E[Nif(N)] =
d∑

j=1

Ci,jE

[
∂f

∂xj
(N)
]
.

This is the desired conclusion. □

We can express a Stein lemma for higher derivative order.

Corollary I.3 : Hermite-Stein lemma
Let N a real random variable, and m ∈ N∗. The following assertions are equivalents :

(i) N follows the law N (0, 1) ;
(ii) For all k ∈ J1,mK, for all k times differentiable functions f : R −→ R having all its derivative having at

most a polynomial growth, we have E[|Hm(N)f(N)|] < +∞ and

E[Hm(N)f(N)] = E[Hm−k(N)f (k)(N)].

Proof : For this proof, we note Sk the set of functions which are
k times differentiable having, for it and for its derivatives, at most a
polynomial growth.

[=⇒] We proceed by induction on m. The case m = 1 is the
Stein’s lemma. For m ⩾ 1, we suppose that (ii) is true. Let us check
(ii) for m+ 1.

• We claim that is it enough to prove it for k = 1. Indeed, let
k ∈ J2,m+ 1K, and f ∈ Sk. Since N is Gaussian,

E [|Hm+1(N)f(N)|] < +∞.

Since :
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E
[
Hm+1−k(N)f (k)(N)

]
= E
[
Hm−(k−1)(N)f (k)(N)

]
,

we have by induction hypothesis that :

E
[
Hm+1−k(N)f (k)(N)

]
= E
[
Hm(N)f ′(N)

]

If we prove the case k = 1, we could conclude that

E
[
Hm+1−k(N)f (k)(N)

]
= E [Hm+1(N)f(N)] .

• Let us prove the k = 1 case. Let f ∈ S1. Hence, since
N ∼ N (0, 1), N admits moments at every order, and so

E [|Hm(N)f(N)|] < +∞.
Using the fact that f has a growth at most polynomial (no bound

terms), and the fact that

dm

dxm

[
e

−x2
2

]
= (−1)mHm(x)e

−x2
2 ,

we have by integration by parts that

E [Hm+1(N)f(N)] = E
[
Hm(N)f ′(N)

]
.

So we proved the case k = 1, and so (ii).
[⇐=] We proceed once again by induction on m. For m = 1, this

is not exactly the Stein’s lemma, since we consider a smaller set of
function. But, nevermind, the proof is the same, we just use the fact
that every polynomial (or the cosine and the sine) belongs to S∞ (the
intersection of the Sk). Hence, the case m = 1 is proved.

We suppose (ii) =⇒ (i) for m ⩾ 1. We suppose (ii) for m+1 : for
every k ∈ J1,m+1K, and g ∈ Sk, we have E [|Hm+1(N)g(N)|] < +∞
and

E
[
Hm+1−k(N)g(k)(N)

]
= E [Hm+1(N)g(N)] .

We want to prove that N ∼ N (0, 1). By induction hypothesis, it is
enough to prove that for every f ∈ Sk, we have E [|Hm(N)f(N)|] <
+∞, and :

E
[
Hm−k(N)f (k)(N)

]
= E [Hm(N)f(N)] .

For the finite expectation, we just need to see that the hypothesis
for m+ 1 case implies that N admits moment at every order, so

E [|Hm(N)f(N)|] < +∞.
Let F (x) =

´ x
0 f(t) dt. Then F ∈ Sk+1 and F ′ = f . By applying

our hypothesis for k = 1, and g = F ∈ Sk+1 ⊂ S1, we have

E [Hm(N)f(N)] = E [Hm+1(N)F (N)] .
Since F ∈ Sk+1,

E [Hm(N)f(N)] = E
[
Hm+1−(k+1)(N)F (k+1)(N)

]
.

Which gives in terms of f :

E [Hm(N)f(N)] = E
[
Hm−k(N)f (k)(N)

]
.

This implies by induction hypothesis that N ∼ N (0, 1) and
concludes our induction. □

The idea is the following : how far a law is from a Gaussian law ? To know it, the lemma will help us : we want
to measure how far a variable satisfies the Stein’s lemma, that is : if F a is random variable satisfying

E [f ′(F ) − Ff(F )] ≪ 1,

is F close to a N (0, 1) law ? This is why we try to solve the Stein’s equation.

Definition I.1
Let N ∼ N (0, 1), h : R −→ R a measure function such that E[|h(N)|] < +∞. We call Stein’s equation the
following ordinary equation where f is the unknown and is absolutely continuous :

f ′(x) − xf(x) = h(x) − E[h(N)].

In our case one-dimensional case, the solution is easily known.

Proposition I.1 : Solution of the Stein’s equation

The set of the solution of the Stein’s equation is an affine space of dimension 1 given by :

f(x) = Ce
x2
2 + fh(x),

where C ∈ R and fh is the unique solution satisfying

e
−x2

2 fh(x) −−−−−→
x→±∞

0.

It is given by

fh(x) = e
x2
2

ˆ x

−∞
(h(y) − E[h(N)])e

−y2
2 dy.
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Proof : • A quick way to prove it is to multiply the equation by
e

−x2
2 and see appear a derivative :

d
dx

[
e

−x2
2 f(x)

]
= e

−x2
2 (h(x)− E[h(N)]) .

Since we suppose that E[|h(N)|] < +∞, then
ˆ

R
|h(y)|e

−y2
2 dy < +∞,

and we can integrate it from −A to x, with A > |x| :

e
−x2

2 f(x) = e
−A2

2 f(−A) +
ˆ x

−A
e

−y2
2 (h(y)− E[h(N)]) dy.

Since the integral terms admits a finite limit when [A → +∞],
then the case of f(A)e

−A2
2 . Hence, we can define

C
def.= lim

A→−∞
e

−A2
2 f(A) < +∞.

The constant C only depends on f , and we have :

f(x) = Ce
x2
2 + e

x2
2

ˆ x

−∞
e

−y2
2 (h(y)− E[h(N)]) dy.

Conversely, every function of this type solves the Stein’s equation.

• The function fh is solution, with C = 0. Moreover, for every
x ∈ R and y ∈ R :

∣∣∣e−y2
2 (h(y)− E[h(N)]) 1{y<x}

∣∣∣ ⩽ e
−y2

2 |h(y)− E[h(N)]| ,

which is integrable on R. By dominated convergence, we conclude
that :

fn(x) −−−−−→
x→−∞

0.

Moreover, in +∞, we have
ˆ +∞

−∞
h(y)e

−y2
2 dy = E[h(N)]

ˆ +∞

−∞
e

−y2
2 dy.

Hence,

fh(x) −−−−−→
x→+∞

0.

• Finally, if we suppose that g is a solution going to zero at ±∞,
then there exists C ∈ R such that

g(x)− fh(x) = Ce
x2
2 .

The left hand side is going to zero at ±∞. This the case of the
right hand side if and only if C = 0, so g = fh. There is an unique
solution of the Stein’s equation going to zero at ±∞. □

Here’s the deal. We want to measure how far a random variable is from the law N (0, 1). To do this, we introduce
the following distance.

Definition I.2
Let H be a subset of F(R,R). We say that H is separative if for all random variables F,G such that
h(F ), h(G) ∈ L1, we have :

∀h ∈ H,E[h(F )] = E[h(G)] =⇒ F
law= G.

In this case, we define for all random variables F,G such that h(F ), h(G) ∈ L1 for all h ∈ H :

dH(F,G) def.= sup
h∈H

|E[h(F )] − E[h(G)]| .

By the previous proposition, we immediately have the following corollary.

Corollary I.4 : Distance and Stein’s equation
Let F a random variable and N ∼ N (0, 1). Then, if H ⊂ {h : R −→ R,E[|h(N)|] < +∞}, we have

dH(F,N) = sup
h∈H

|E [f ′
h(F ) − Ffh(F )]| .

In other words, the supremum does not contains explicitly N .

I.2 Some estimations of the distance for different class of functions
We will here explain the different spaces H we could take to estimate the previous distance. In particular, we

will prove Stein’s bound we used in the precedent part for Poincaré’s second type inequality for the one-dimensional
case.
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I.2.1 Total variation distance

Definition I.3
We set d ∈ N∗ and

H =
{

1B , B ∈ B
(
Rd
)}
.

The total variation distance is the distance in law for this space H : for all random variables F,G,

dTV(F,G) def.= sup
B∈B(Rd)

|P(F ∈ B) − P(G ∈ B)|.

If d = 1, the definition is equivalent to

dTV(F,G) = sup
x∈R

|P(F ⩽ x) − P(G ⩽ x)|.

We can estimate a first Stein’s bound for this distance.

Proposition I.2 : Stein’s bound for total variation distance

i. Let h : R −→ [0, 1] a measurable function. Then, there exists a version of f ′
h such that we have :

∥fh∥∞ ⩽
√
π

2 and ∥f ′
h∥∞ ⩽ 2.

ii. We note FTV the set of all absolutely continuous functions on R bounded by
√

π
2 and such that there

exists a version of their derivative bounded by 2. Then, we have the following Stein’s bound, for F ∈ L1 and
N ∼ N (0, 1) :

dTV(F,N) ⩽ sup
f∈FTV

|E [f ′(F ) − Ff(F )]| .

Proof : i. Since

ˆ x

−∞
(h(y)−E[h(N)])e

−y2
2 dy = −

ˆ +∞

x
(h(y)−E[h(N)])e

−y2
2 dy,

since the integral over R is zero, we have, by distinguishing the
cases where x < 0 and x > 0, and since |h| ⩽ 1 :

|fh(x)| ⩽ e
x2
2

ˆ +∞

|x|
e

−y2
2 dy.

We call S(x) the right hand side. Let us show that S admits its
maximum at 0. We have

S(0) =
ˆ +∞

0
e

−y2
2 dy =

√
π

2
.

To do this, we compute the derivative for x > 0 and x < 0. For
x > 0,

S′(x) = xe
x2
2

ˆ +∞

x
e

−y2
2 dy − 1.

Using the fact that the bound of the integral starts in x :

S′(x) ⩽ e
x2
2

ˆ +∞

x
ye

−y2
2 dy − 1.

We can compute this integral :

S′(x) ⩽ e
x2
2 e

−x2
2 − 1 = 0.

Hence, S is decreasing on R+. We do the same on R−. S has the
expression

S(x) = e
x2
2

ˆ x

−∞
e

−y2
2 dy

on R−, so that S is the product of two positive increasing func-
tions so S is increasing on R−. We conclude that for every x ∈ R,
S(x) ⩽ S(0), and so that

∥fh∥∞ ⩽
√

π

2
.

For f ′
h, we use the differential equation satisfied by fh. Since h

takes its values in [0, 1], we have :

|f ′
h(x)| ⩽ |x|e x

2
2

ˆ +∞

|x|
e

−y2
2 dy + 1.

We use the same bound trick as before :

|f ′
h(x)| ⩽ e

x2
2

ˆ +∞

|x|
ye

−y2
2 dy + 1.

We can compute this integral, and we obtain finally :
∥∥f ′
h

∥∥
∞ ⩽ 2.

ii. We already have the estimation by Stein’s equation :

dTV(F,N) = sup
h=1B
B∈B(R)

∣∣E [f ′
h(F )− Ffh(F )

]∣∣

But, if h = 1B , fh ∈ FTV, so the Stein’s bound is now imme-
diate :

dTV(F,N) ⩽ sup
f∈FTV

∣∣E [f ′(F )− Ff(F )
]∣∣ .

This concludes the proof. □
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I.2.2 Kolmogorov distance

Definition I.4
We set d ∈ N∗ and

H =
{

d⊗

i=1
1]−∞,zi], zi ∈ R

}
.

The Kolmogorov distance is the distance in law for this set H. In other words, for all random variables F,G :

dKol(F,G) def.= sup
z1,··· ,zd∈R

∣∣∣∣∣P
(
F ∈

d∏

i=1
] − ∞, zi]

)
− P

(
G ∈

d∏

i=1
] − ∞, zi]

)∣∣∣∣∣ .

Then, we can see that dKol ⩽ dTV. We can have a better Stein’s bound.

Proposition I.3 : Stein’s bound for Kolmogorov distance

i. Let z ∈ R and h = 1]−∞,z]. We set fz = fh. Then, there exists a version of f ′
z such that we have :

∥fz∥∞ ⩽
√
π

8 and ∥f ′
z∥∞ ⩽ 1.

ii. We note FKol the set of all absolutely continuous functions on R bounded by
√

π
8 and such that there

exists a version of their derivative bounded by 1. Then, we have the following Stein’s bound, for F ∈ L1 and
N ∼ N (0, 1) :

dKol(F,N) ⩽ sup
f∈FTV

|E [f ′(F ) − Ff(F )]| .

A very nice property of this distance is the following : under a condition of continuity of a cumulative distribution
function, the Kolmogorov’s distance allows to put a metric on the law convergence.

Theorem I.1 : Kolmogorov distance and convergence in distribution
(i) If a sequence of random variables converges in Kolmogorov sense, then it converges in law.
(ii) Let (Xn)n a sequence of random variables, and X a random variable such that its cumulative distribution
function Φ : x 7−→ P(X ⩽ x) is continuous on R. Then (Xn)n converges in law to X if and only if (Xn)n

converges to X for dKol.

Proof : (i) This is in fact the case for every distance we present
here. The fact that the cumulative distribution functions converge to
an another cumulative distribution function at every point of conti-
nuity is equivalent to the convergence in distribution.

(ii) We know that

P(Xn ⩽ x)− P(X ⩽ x) −−−−−→
n→+∞

0,

for every x ∈ R, and we want to prove

sup
x∈R
|P(Xn ⩽ x)− P(X ⩽ x)| −−−−−→

n→+∞
0.

That is proving uniform convergence from simple convergence.
To do that, we use Dini’s theorem. So, we set on a compact. More
precisely, if we consider

fn : x ∈
[−π

2
,
π

2

]
7−→

{
0 if x = −π

2
P(Xn ⩽ tan(x)) if x ∈

]−π
2 , π2

[
1 if x = π

2

and f like fn but for X, then (fn)n is a sequence of functions
that converges pointwise to f on the compact

[−π
2 , π2

]
and such that

for every n ∈ N, fn is an increasing function. Finally, f is continuous

by composition of continuous functions. By second Dini’s theorem, it
means that

sup
x∈
[

−π
2 ,π2

] |fn(x)− f(x)| −−−−−→
n→+∞

0.

Since at the bounds, the quantity inside the supremum is zero, we
have :

sup
x∈
]

−π
2 ,π2

[ |P(Xn ⩽ tanx)− P(X ⩽ tanx)| −−−−−→
n→+∞

0.

Finally, since tan is a bijection between
]−π

2 , π2

[
and R, we finally

have what we expected :

sup
z∈R
|P(Xn ⩽ z)− P(X ⩽ z)| −−−−−→

n→+∞
0.

That is

dKol(Xn, X) −−−−−→
n→+∞

0.

So this proves our equivalence. □
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We can explicit a counter example if the cumulative distribution function is not continuous. We have

δ 1
n

law−−−−−→
n→+∞

δ0,

with δ0 having a non continuous cumulative distribution function. And we have for all n ∈ N∗ :

dKol

(
δ 1
n
, δ0

)
= sup

z∈R

∣∣∣1{z⩽ 1
n} − 1{z⩽0}

∣∣∣ = 1.

So the distance cannot go to zero.

I.2.3 Wasserstein distance

Definition I.5
We set d ∈ N∗ and

H = Lip(1),

the set of all function h : Rd −→ R which are 1-lipschitzian. We call Wasserstein distance the distance in law
associated. We note it dW.

Proposition I.4 : Stein’s bound for Wasserstein distance

i. Let h : R −→ R a K-Lipschitz function. Then fh ∈ C1(R), we have, if N ∼ N (0, 1) :

fh(x) = −
ˆ +∞

0

e−t

√
1 − e−2t

E
[
Nh

(
e−tx+

√
1 − e−2tN

)]
dt.

Finally, we have ∥f ′
h∥∞ ⩽ K

√
2
π .

ii. We note FW the set of function C1 on R such that their derivative is bounded by
√

2
π . For F ∈ L2 and

N ∼ N (0, 1), we have

dW(F,N) ⩽ sup
F ∈FW

|E [f ′(F ) − Ff(F )]| .

Proof : We could simply check that the left hand side satisfies
the Stein’s equation and the limit condition, like do the reference. We
will actually derive it, by doing before an analysis step. The idea is to
use Malliavin calculus, in dimension 1.
• Since

fh(x) = e
x2
2

ˆ x

−∞
(h(y)− E[h(N)]) e

−y2
2 dy,

and since h is continuous, fh is indeed C1.
• With the notation of the chapter I of the part about Malliavin

calculus, if we consider Fh a antiderivative of fh, then the Stein’s
equation writes, if we suppose Fh ∈ S :

LFh(x) = h(x)− E[h(N)]
But, by the tricks we used in this chapter, we have

h(x)− E[h(N)] = P0h(x)− P∞h(x) = −
ˆ +∞

0

dPth
dt

(x) dt.

By relation between derivative of Pt and L :

h(x)− E[h(N)] = −
ˆ +∞

0
LPth(x) dt.

Hence, a possible definition of Fh would be

Fh(x) = −
ˆ +∞

0
Pth(x) dt.

However, the convergence of this integral is not guarantied under
our hypothesis. That’s why we will introduce E[h(N)] = P∞h, and
define

Fh(x) def.=
ˆ +∞

0
{E[h(N)]− Pth(x)} dt.

Let us show that Fh is well-defined. Let

(A) def.=
ˆ +∞

0
E
[∣∣∣h(N)− h

(
e−tx+

√
1− e−2tN

)∣∣∣
]
.

Then, since h is K-Lipschitz, we have

(A) ⩽ K

ˆ +∞

0
E
[∣∣∣
(

1−
√

1− e−2t
)
N − e−tx

∣∣∣
]
.

We cut in two :

(A) ⩽ K|x|
ˆ +∞

0
e−t dt+KE[|N |]

ˆ +∞

0

(
1−
√

1− e−2t
)

dt.

We can up-bound the second integral, since

1−
√

1− e−2t = e−2t

1 +
√

1− e−2t
⩽ e−2t.

Finally,

(A) ⩽ K|x|+ K

2

√
π

2
< +∞,
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so Fh is well-defined. Hence, we just need to differentiate to define
fh :

fh(x) def.=
ˆ +∞

0
e−tE

[
h′
(
e−tx+

√
1− e−2tN

)]
.

We can indeed define h′ since h is Lipschitz. Then, by Stein’s
lemma for the map

y 7−→ h

(
e−tx+

√
1− e−2ty

)
,

we have our expected definition :

fh(x) def.=
ˆ +∞

0

e−t
√

1− e−2t
E
[
Nh

(
e−tx+

√
1− e−2tN

)]
.

We just need to do the synthesis step to conclude.
• With such a definition, we just need to show that Fh is indeed

in the domain of L. To do this, we will show that Fh is in fact in S. To
stay consistent, we write f̃h the integral function we just defined be-
fore, and F̃h the anti-derivative. f̃h is C1, by dominated convergence,
since :

E

[∣∣∣∣
e−2t

√
1− e−2t

h′
(
e−tx+

√
1− e−2tN

)∣∣∣∣
]
⩽ K

√
2
π

e−2t
√

1− e−2t
,

which is integrable on R+. We have as a consequence by differen-
tiating the integral :

∣∣f̃ ′(x)
∣∣ ⩽ K

√
2
π

So f̃ ′
h is bounded by K

√
2
π

, and so F̃h ∈ D(L). As a conse-
quence, f̃h satisfies the Stein’s equation.
• To be sure that f̃h is indeed fh, we have one last thing to

check : the fact that

e
−x2

2 f̃h(x) −−−−−→
x→±∞

0.

But, this property is true by the bound we just give for f̃ ′
h :

|f̃h(x)| ⩽ |f̃h(0)|+K

√
2
π
|x|.

So we finally have f̃h = fh like expected. □

I.2.4 An application for centered Gaussian

We can apply those bounds here for Gaussian random variables.

Proposition I.5 : Estimations for Gaussian random variables

Let σ1, σ2 > 0, N1 ∼ N (0, σ2
1) and N2 ∼ N (0, σ2

2). Then,
(i) For total variation distance :

dTV(N1, N2) ⩽ 2
max{σ2

1 , σ
2
2}
∣∣σ2

1 − σ2
2
∣∣ .

(ii) For Kolmogorov distance :

dKol(N1, N2) ⩽ 1
max{σ2

1 , σ
2
2}
∣∣σ2

1 − σ2
2
∣∣ .

(iii) For Wasserstein distance :

dW(N1, N2) ⩽
√

2
π

1
max{σ1, σ2}

∣∣σ2
1 − σ2

2
∣∣ .

Proof : Let N0 ∼ N (0, 1), and we suppose that σ1 ⩽ σ2. The
idea is to use the fact that N2

law= σ2N0, and use Stein’s bound for a
Gaussian.

(i) Like we just told, we have

dTV(N1, N2) = dTV(N1, σ2N0).
Since the map B 7−→ σ2B from B(R) to itself is a bijection, we

have

dTV(N1, N2) = dTV

(
N1
σ2

, N0

)
.

Now, we just use the Stein’s bound for total variation, and com-
pute thanks to Stein’s lemma all the quantities that appear. We have

dTV(N1, N2) ⩽ sup
f∈FTV

∣∣∣E
[
f ′
(
N1
σ2

)
− N1
σ2

f

(
N1
σ2

)]∣∣∣ .

Let f ∈ FTV. We have N1
σ2
∼ N

(
0,
(
σ1
σ2

)2
)

, and

E
[∣∣∣f ′

(
N1
σ2

)∣∣∣
]
⩽ 2 < +∞.

By Stein’s lemma :

E
[
f ′
(
N1
σ2

)]
= E

[
σ2N1
σ2

1
f

(
N1
σ2

)]
.

Since we know that f ′ is bounded by 2, we express everything
only in terms of f ′. Here, we get :

dTV(N1, N2) ⩽ sup
f∈FTV

∣∣∣∣E
[(

1−
(
σ1
σ2

)2
)
f ′
(
N1
σ2

)]∣∣∣∣ .
And so,

dTV(N1, N2) ⩽ 2
(

1−
(
σ1
σ2

)2
)
.

(ii) This is essentially the same argument. We have again :
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dTV(N1, N2) ⩽ sup
f∈FKol

∣∣∣E
[
f ′
(
N1
σ2

)
− N1
σ2

f

(
N1
σ2

)]∣∣∣ .

This time, f ′ is bounded by 1, so it gives :

dTV(N1, N2) ⩽
(

1−
(
σ1
σ2

)2
)
.

(iii) For Wasserstein distance, it is not true that

dW (F, αG) = dW

( 1
α
F,G

)
,

since the map h 7−→ h(α·) does not takes values in Lip(1), but in
Lip(α). It does not matter, we can do nevertheless the computation
in this case. Hence, by our little argumentation, we have

dW(N1, N2) ⩽ sup
g∈Lip(σ2)

∣∣∣E
[
g

(
N1
σ2

)
− g(N0)

]∣∣∣ .
By the proposition about the Stein’s bound for Wasserstein dis-

tance, if h is K-Lipschitz, then fh is C1 and K
√

π
2 -Lipschitz. It

follows that by Stein’s equation :

dW(N1, N2) ⩽ sup
f∈C1∩Lip

(√
2
π
σ2

)
∣∣∣E
[
f ′
(
N1
σ2

)
− N1
σ2

f

(
N1
σ2

)]∣∣∣ .

By Stein’s lemma,

dW(N1, N2) ⩽ sup
f∈C1∩Lip

(√
2
π
σ2

)
∣∣∣∣
(

1−
(
σ1
σ2

)2
)

E
[
f ′
(
N1
σ2

)]∣∣∣∣ .

And so,

dW(N1, N2) ⩽ σ2

√
2
π

(
1−
(
σ1
σ2

)2
)
.

This show our estimation. □

In fact, we can explicitly express the Kolmogorov distance for two centered Gaussian variables.

Proposition I.6 : Kolmogorov distance for Gaussian variables

Let σ1, σ2 > 0. Then

dKol(N (0, σ2
1),N (0, σ2

2)) = Φ
(

σ2√
σ2

2 − σ2
1

√
ln
(
σ2

2
σ2

1

))
− Φ

(
σ1√

σ2
2 − σ2

1

√
ln
(
σ2

2
σ2

1

))
,

where Φ(x) = P(N ⩽ x) is the cumulative distribution function of N (0, 1).

Proof : We suppose that σ1 ⩽ σ2. Then if we define the function

f : x 7−→ P(N1 ⩽ x)− P(N2 ⩽ x),

then f is differentiable on R. Its derivative is given by

√
2πf ′(x) = 1

σ1
e

−x2
2σ2

1 − 1
σ2
e

−x2
2σ2

2 .

Then, f ′(x) is null if and only if (we suppose that σ1 < σ2) :

x2 =
2σ2

1σ
2
2

σ2
2 − σ2

1
.

Finally, let us notice that

dKol(N1, N2) = max
{

sup
x⩾0

f(x),− sup
x⩽0

f(x)
}
.

Since f is odd, we have finally that the supremum is taken on
R+, and so the value of x is known. □

I.3 Berry-Esséen theorem and Central Limit Theorem
We want to precise the convergence in law for the CLT. The Stein’s method allows us to do it for the Kolmogorov’s

distance, if we add the hypothesis of being in L3.

Theorem I.2 : Berry-Esséen theorem

Let (Xi)i a sequence of real random variables L3 which are independent and identically distributed. We suppose
that E[Xi] = 0 and E[X2

i ] = 1. Finally, we set

Sn
def.= 1√

n

n∑

i=1
Xi.

Then,

dKol(Sn,N (0, 1)) ⩽
CE

[
|X1|3

]
√
n

.

Since the convergence in Kolmogorov sense implies the convergence in law, this proves the Central Limit Theo-
rem.
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Proof : The first idea would be to take h = 1]−∞,z], for z ∈ R
and directly apply a Stein’s method. With a few computations quite
close to those we will perform later, we would have to estimate

∣∣E [h(Sn)− h(Sin)
]∣∣ ,

where Sin = Sn − 1√
n
Xi

law= Sn−1. Since h is not absolutely
continuous, a satisfying estimation is quite hard to derive. Here, "sa-
tisfying" means finding an estimation in the form O

(
1
nα

)
, α > 0. For

our theorem, α = 1
2 would do the trick. To avoid this problem, we ap-

proach h by an absolute continuous function, and compute everything
with this approximation. We will show that we can find the result for
h after all. Here’s the plan.

1. We set z ∈ R, and ε > 0. We consider hz,ε like :

hz,ε1 1]−∞,z]

•
z

•
z − ε •

z + ε

Then, we have, for all n ⩾ 1 and if N ∼ N (0, 1) :

dKol(Sn, N) ⩽ 4ε√
2π

+ sup
z∈R
|E [hz,ε(Sn)− hz,ε(N)]| .

2. Let

Cn
def.= sup

(X1,··· ,Xn)∈An

√
ndKol(Sn, N)
E [|X1|3]

,

where

An =

{
(X1, · · · , Xn) ∈ L3(Ω)n

∣∣∣∣∣
X1, · · · , Xn iid

E[X1] = 0
E[X2

1 ] = 1

}

Then Cn ⩽ √n.
3. By a Stein’s method, we have the estimation for 1. :

dKol(Sn, N) ⩽ 4ε√
2π

+
AE
[
|X1|3

]
√
n

+
BCn−1E

[
|X1|3

]

εn
.

4. We optimize in ε, and we conclude that Cn ⩽ α
√
Cn−1 + β,

and so that (Cn)n is bounded. This will conclude the proof.
Let us begin the proof of the Berry-Esséen theorem.
1. By definition of hz,ε, we have the inequalities :

hz−ε,ε ⩽ 1]−∞,z] ⩽ hz+ε,ε.

Indeed :

hz−ε,ε hz+ε,ε1]−∞,z]

•
z

•
z − 2ε

•
z + 2ε

So we have the inequalities :

E [hz−ε,ε(Sn)] ⩽ P(Sn ⩽ z) ⩽ E [hz+ε,ε(Sn)] .
• Let us try to show the same inequality for N , but with reversed

roles. To do this, we want to estimate

∆ε
def.= E [hz+ε,ε(N)]− E [hz−ε,ε(N)] .

To do this, we use the expression of hz,ε :

hz,ε(x) = 1]−∞,z−ε](x) +
(
z + ε− x

2ε

)
1]z−ε,z+ε](x).

So, we have :

∆ε

= P(N ⩽ z)− P(N ⩽ z − ε)
+ z + 2ε

2ε
P(z ⩽ N ⩽ z + 2ε)− z

2ε
P(z − 2ε ⩽ N ⩽ z)

− 1
2ε

E
[
N1{z⩽N⩽z+2ε}

]
+ 1

2ε
E
[
N1{z−2ε⩽N⩽z}

]
.

We write as an integral and arrange it :

∆ε

=
ˆ z+2ε

z−2ε
ρ(x) dx

+ 1
2ε

(
ˆ z+ε

z
(z − x)ρ(x) dx−

ˆ z

z−2ε
(z − x)ρ(x) dx

)
,

where ρ is the density of N (0, 1). The terms in z−x is lower than
2ε in absolute values. So :

|∆ε| ⩽ 2
ˆ z+2ε

z−2ε
ρ(x) dx.

Since |ρ| ⩽ 1√
2π , we finally have :

|∆ε| ⩽
4ε√
2π
.

• So we can conclude on the inequalities on P(N ⩽ z). We have

E [hz−ε,ε(N)] ⩽ P(N ⩽ z) ⩽ E [hz+ε,ε(N)] .
So, by in terms of ∆ε :

E [hz+ε,ε(N)]−∆ε ⩽ P(N ⩽ z) ⩽ E [hz−ε,ε(N)] + ∆ε.

And by the work done before :

E [hz+ε,ε(N)]− 4ε√
2π

⩽ P(N ⩽ z) ⩽ E [hz−ε,ε(N)] + 4ε√
2π
.

Finally, we have

E [hz−ε,ε(Sn)]− E [hz+ε,ε(Sn)] + 4ε√
2π

⩽ P(Sn ⩽ z)− P(N ⩽ z)
⩽ E [hz+ε,ε(Sn)]− E [hz−ε,ε(Sn)]− 4ε√

2π
.

So, we proved that

dKol(Sn, N) ⩽ sup
z∈R
|E [hz+ε,ε(Sn)]− E [hz−ε,ε(Sn)]|+ 4ε√

2π
.

2. If (X1, · · · , Xn) ∈ An, then we have by Jensen’s inequality :

E
[
|X1|3

]
⩽ E
[
X2

1
] 3

2 = 1.

Moreover, we have dKol ⩽ 1. So, we have Cn ⩽ √n. This doesn’t
proof that (Cn)n is bounded, but this estimation will be helpful.

3. For more easy notations, we note h = hz,ε and f = fh the as-
sociated solution of Stein’s equation. By the proposition about the es-
timation for Kolmogorov distance, f is C1 and satisfies ∥f∥∞ ⩽

√
π
2

and ∥f ′∥∞ ⩽ 2. Then, by Stein’s equation :

E [h(Sn)− h(N)] = E
[
f ′(Sn)− Snf(Sn)

]
.

In terms of (Xi)i :

E [h(Sn)− h(N)] =
n∑

i=1

E
[
f ′(Sn)
n

− Xi√
n
f(Sn)

]
.

We make appear with f the derivative f ′ thanks to the random
variable
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Sin
def.= Sn −

Xi√
n

= 1√
n

∑

j ̸=i

Xj .

The idea is to find a recurrent inequality on Cn to prove that this
sequence is bounded. We can have access to this with Sin which is
equal in law to Sn−1, up to a factor. The rand variable Sin is inde-
pendent of Xi, so

E
[
Xif

(
Sin
)]

= 0.
So, we have :

E [h(Sn)− h(N)] =
n∑

i=1

E
[
f ′(Sn)
n

− Xi√
n

(
f(Sn)− f

(
Sin
))]

.

There exists a random variable θ independent of (Xi)i such that
θ ∼ U([0, 1]) and :

f(Sn)− f
(
Sin
)

= Xi√
n
f ′
(
Sin + θXi√

n

)
.

So, we have :

E [h(Sn)− h(N)] = 1
n

n∑

i=1

E
[
f ′(Sn)−X2

i f
′
(
Sin + θXi√

n

)]
.

We now use the differential equation satisfied by f ′. We note

f̃(x) def.= xf(x)
Then, we have :

E [h(Sn)− h(N)]

= 1
n

n∑

i=1

E
[
f̃(Sn)−X2

i f̃

(
Sin + θXi√

n

)]

+ 1
n

n∑

i=1

E
[
h(Sn)−X2

i h

(
Sin + θXi√

n

)]

− 1
n

n∑

i=1

E
[
1−X2

i

]
E[h(N)].

Since E[X2
i ] = 1, the last term is zero. Since Xi is independent

of Sin, we have

E
[
X2
i f̃
(
Sin
)]

= E
[
f̃
(
Sin
)]
.

Same for h. We cut in four the expression :

E [h(Sn)− h(N)]

= 1
n

n∑

i=1

E
[
f̃(Sn)− f̃

(
Sin
)]

+ 1
n

n∑

i=1

E
[
X2
i

(
f̃
(
Sin
)
− f̃
(
Sin + θXi√

n

))]

+ 1
n

n∑

i=1

E
[
h(Sn)− h(Sin)

]

+ 1
n

n∑

i=1

E
[
X2
i

(
h(Sin)− h

(
Sin + θXi√

n

))]
.

We write

E [h(Sn)− h(N)] = 1
n

n∑

i=1

{(A) + (B) + (C) + (D)} .

We treat one by one each term.

A. We will the following inequality, using the bounds satisfied by
f :

|f̃(x)− f̃(y)| ⩽
√

π

2
|x− y|+ 2|y||x− y|.

Here, we get for (A) :

|(A)| ⩽
√

π

2
E
[
|Sn − Sin|

]
+ 2E

[∣∣Sin
∣∣ ∣∣Sin − Sn

∣∣] .
By Cauchy-Schwarz on the second term :

|(A)| ⩽
√

π

2n
E [|Xi|] + 2√

n
E
[∣∣Sin

∣∣2
] 1

2
E
[
X2
i

] 1
2 .

We have E[X2
i ] = 1 and by triangular inequality, E[

∣∣Sin
∣∣2]

1
2 ⩽ 1.

We finally have the following bound for (A) :

|(A)| ⩽ 1√
n

(
2 +
√

π

2

)
.

B. We use the exact same inequality.

|(B)| ⩽
√

π

2n
E
[
θ |Xi|3

]
+ 2√

n
E
[
θ|Xi|3|Sin|

]
.

By mutual independence of θ, Xi, and Sin, we have :

|(B)| ⩽
√

π

8n
E
[
|Xi|3

]
+ 1√

n
E
[
|Xi|3

]
E[|Sin|].

And since E[|Sin|] ⩽ 1, we have the inequality :

|(B)| ⩽
E
[
|Xi|3

]
√
n

(
1 +
√

π

8

)
.

C. This estimation is the point that makes the use of hz,ε instead
of directly use the indicator function, like we said in the beginning of
the proof. Indeed, we have the equality :

h(y)− h(x) = (y − x)
ˆ 1

0
h′(x+ s(y − x)) ds.

The derivative of h is zero except on [z−ε, z+ε] where it is equal
to −1

2ε . We write as

h(y)− h(x) = y − x
−2ε

E
[
1[z−ε,z+ε](x+ θ̃(y − x))

]
,

where θ̃ ∼ U([0, 1]). So, we have

|(C)| ⩽ E[|Xi|]
2ε
√
n

P

(
z − ε− θ̃Xi√

n
⩽ Sin ⩽ z + ε− θ̃Xi√

n

)
.

Since E[|Xi|] ⩽ 1, we have the following inequality :

|(C)| ⩽ 1
2ε
√
n

sup
t∈[0,1]
y∈R

P
(
z − ε− ty√

n
⩽ Sin ⩽ z + ε− ty√

n

)
.

This supremum may look scary, but we can in fact estimate it in
terms of the Kolmogorov distance of Sin with N (0, 1). Knowing the
fact that Sin

law=
√

n−1
n
Sn−1, we could conclude. Let N ∼ N (0, 1).

Let a < b. Then :

P(a ⩽ Sin ⩽ b)

= P
(√

n

n− 1
a ⩽ Sn−1 ⩽

√
n

n− 1
b

)

− P
(√

n

n− 1
a ⩽ N ⩽

√
n

n− 1
b

)

+ P
(√

n

n− 1
a ⩽ N ⩽

√
n

n− 1
b

)

Since N ∼ N (0, 1), the third term is easily estimated. The two
first can be estimated in terms of Kolmogorov distance :
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P(a ⩽ Sin ⩽ b) ⩽ dKol(Sn−1,N (0, 1)) + b− a√
2π

√
n

n− 1
.

Going back to (C), we have for all t ∈ [0, 1] and y ∈ R, and by
definition of Cn−1 :

P
(
z − ε− ty√

n
⩽ Sin ⩽ z + ε− ty√

n

)

⩽
Cn−1E

[
|Xi|3

]
√
n− 1

+ 2ε√
2π

√
n

n− 1
.

Hence, we have :

|(C)| ⩽
Cn−1E

[
|X1|3

]

2ε
√
n(n− 1)

+ 1√
2π(n− 1)

.

Finally, by using n − 1 ⩾ n
2 and E

[
|X1|3

]
⩽ E

[
|X1|3

]2, we
have :

|(C)| ⩽
Cn−1E

[
|X1|3

]2

√
2εn

+ 1√
πn

.

D. We use the same estimations as C.. Indeed, we have by the
estimation on the increments of h (in terms of θ̃) :

|(D)| ⩽ 1
2ε
√
n
E
[
θ|Xi|3

]

· P
(
z − ε− θ̃θXi√

n
⩽ Sin ⩽ z + ε− θ̃θXi√

n

)
.

So, we have by independence of θ with Xi :

|(D)| ⩽ 1
4ε
√
n
E
[
|Xi|3

]

· sup
t∈[0,1]
y∈R

P
(
z − ε− ty√

n
⩽ Sin ⩽ z + ε− ty√

n

)
.

By the estimation of this supremum made in C., we get :

|(D)| ⩽
E
[
|Xi|3

]

4ε
√
n

(
Cn−1E

[
|Xi|3

]
√
n− 1

+ 2ε√
2π

√
n

n− 1

)
.

We write it as :

|(D)| ⩽
Cn−1E

[
|Xi|3

]2

4ε
√
n(n− 1)

+
E
[
|Xi|3

]
√

8π(n− 1)
.

And conclude using n− 1 ⩾ n
2 :

|(D)| ⩽
Cn−1E

[
|Xi|3

]2

2
√

2εn
+

E
[
|Xi|3

]
√

4πn
.

• We can go back to the estimation of E[h(Sn) − h(N)]. We
estimated the four terms that appeared in the estimation we made.
We write as increasing powers of E[|X1|3]√

n
.

|E [h(Sn)− h(N)]|
⩽ 1√

n

(
2 +
√

π
2 + 1√

π

)

+ E[|X1|3]√
n

(
1 +
√

π
8 + 1√

4π

)

+ Cn−1E[|X1|3]2

εn

(
1√
2 + 1

2
√

2

)
.

We simplify the constants (we need them explicitly) by taking their
upper integer part. We also use once again the fact that 1 ⩽ E

[
|X1|3

]
to finally have the estimation :

|E [h(Sn)− h(N)]| ⩽
6E
[
|X1|3

]
√
n

+
2Cn−1E

[
|X1|3

]2

εn
.

This estimation is independent of z. So, we have proved that

dKol(Sn,N (0, 1)) ⩽ 4ε√
2π

+
2Cn−1E

[
|X1|3

]2

nε
+

6E
[
|X1|3

]
√
n

.

4. The optimization in ε gives ε =
√√

2πCn−1E[|X1|3]2

2n and

dKol(Sn,N (0, 1)) ⩽ 2

√
8Cn−1E [|X1|3]2

n
√

2π
+

6E
[
|X1|3

]
√
n

.

So,

√
ndKol(Sn,N (0,1))

E [|X1|3]
⩽
√

32Cn−1√
2π

+ 6 ⩽ 4
√
Cn−1 + 6.

We consequently have the recurrent inequality :

Cn ⩽ 4
√
Cn−1 + 6.

To conclude, we find the fixed point on R+ of x 7−→ 4
√
x + 6.

Here, this fixed point is lower than 21. We conclude by induction that
Cn ⩽ 21, for all n ∈ N. Indeed, C1 ⩽

√
1 by 2. (that’s why we nee-

ded the constant explicitly, it was to prove the initialisation part of
the induction). So, (Cn)n is bounded, and we conclude that for all
n ∈ N :

dKol(Sn,N (0, 1)) ⩽
21E
[
|X1|3

]
√
n

.

This proves the theorem. □

I.4 A discrete version : Chen-Stein lemma and bounds
We did all our theory around the centered reduced Gaussian random variables. But, we can do the same in a

discrete case, for Poisson random variables.

Lemma I.2 : Chen-Stein’s lemma
Let X a random variable taking values in N and λ > 0. Then the following assertions are equivalent :

(i) X follows P(λ) ;
(ii) For every bounded function f : N −→ R,

E[Xf(X)] = λE[f(X + 1)].
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To prove it, we will use a new method we could apply before. We will directly use the Stein’s equation. Here’s
the discrete version.

Definition I.6
Let A ⊂ N, λ > 0, and Z ∼ P(λ). We call Stein-Chen’s equation the functional equality

λfA(k + 1) − kfA(k) = 1A(k) − P(Z ∈ A),

where the unknown is fA : N −→ R satisfies the initial condition fA(0) = 0.

Like in the Gaussian case, we can express a solution to this equation.

Proposition I.7 : Solution to Stein-Chan’s equation

The Stein-Chen’s equation admits an unique solution given by :

fA(k + 1) = P(Z ⩽ k, Z ∈ A) − P(Z ⩽ k)P(Z ∈ A)
λP(Z = k) .

Moreover, the solution is bounded :

sup
A⊂N

sup
k∈N

|fA(k)| ⩽ eλ

λ
.

Proof : We could prove it by induction, but it would mean that
we already knew the answer. Let us derive it. To do this, we introduce
a sequence (ψn)n⩾1, with ψ1 ̸= 0 such that

∀k ∈ N∗, ψk+1 = λ

k
ψk.

Such ψn is given by

ψn = ψ1
λn−1

(n− 1)!
.

So, taking ψn = P(Z = n − 1) do the trick. Thanks to this
sequence, we have for our functional equation :

fA(k + 1)− ψk

ψk+1
fA(k) = 1A(k)− P(Z ∈ A)

λ
.

So, if we introduce ∆un = un+1 − un, we have :

∆(fA(k)ψk) = ψk+1 (1A(k)− P(Z ∈ A))
λ

.

So, if we sum, we have :

fA(k + 1)ψk+1 − fA(0)ψ0 = 1
λ

k∑

j=0

ψj+1 (1A(j)− P(Z ∈ A)) ,

where ψ0 is arbitrary. Since fA(0) = 0, we are really close to our
result, up to the computation of the sum. We have :

k∑

j=0

ψj+1 (1A(j)− P(Z ∈ A))

=
k∑

j=0

P(Z = j)1A(j)

−
k∑

j=0

P(Z = j)P(Z ∈ A).

Hence,

k∑

j=0

ψj+1 (1A(j)− P(Z ∈ A))

= P(Z ⩽ k, Z ∈ A)− P(Z ⩽ k)P(Z ∈ A).
And we have our expression for fA(k + 1). Let us show that fA

is bounded. To do this, we use the fact that

P(Z ⩽ k, Z ∈ A) ⩽ P(Z ∈ A).
We have thanks to this :

|fA(k + 1)| ⩽ P(Z ∈ A)P(Z ⩾ k + 1)
λP(Z = k)

.

But, the sequence
( P(Z⩾k+1)

P(Z=k)

)
k

is decreasing. We prove it later
on the following lemma by expending the probabilities. So, we have

|fA(k + 1)| ⩽ eλ

λ
.

This concludes the proof. □

We have everything to prove the Chen-Stein’s lemma.

Proof of the lemma : [=⇒] If X follows the law of Poisson, and
f : N −→ R is bounded then

E[Xf(X)] =
+∞∑

n=0

nf(n)e−λ λ
n

n!
.

The term n = 0 is zero, and for n ⩾ 1, the factor "n" simplifies

74 Jérémy Zurcher



M2 Part II - Stein’s method

with the factorial. We hence have :

E[Xf(X)] =
+∞∑

n=0

f(n+ 1)e−λ λ
n+1

n!
.

Meaning that

E[Xf(X)] = λE[f(X + 1)].
[⇐=] We set Z ∼ P(λ), A ⊂ N and fA the solution of the Chen-

Stein’s equation. We suppose that for every f : N −→ R bounded :

E[Xf(X)] = λE[f(X + 1)].

Then, if we apply it to fA :

E[λfA(X + 1)−XfA(X)] = 0.
By Chen-Stein’s equation :

E[1A(X)− P(Z ∈ A)] = 0.
In other words, for any A ⊂ N, we have

P(Z ∈ A) = P(X ∈ A),

this means that X law= Z, so X ∼ P(λ). □

Thanks to this, we are able to prove a Chen-Stein’s bound. Before that, a lemma which will be helpful for the
next proposition.

Lemma I.3 : Difference of Chen-Stein’s solution
Let j ∈ N. Then, for all k ∈ N∗ :

f{j}(k + 1) − f{j}(k) > 0 ⇐⇒ j = k.

Proof of the lemma : We treat every possible cases. We have

∆j(k) def.= f{j}(k + 1)− f{j}(k)
= P(Z⩽k,Z=j)−P(Z⩽k)P(Z=j)

λP(Z=k)
− P(Z⩽k−1,Z=j)−P(Z⩽k−1)P(Z=j)

λP(Z=k−1) .

• If j < k, then

P(Z ⩽ k, Z = j) = P(Z ⩽ k)
and

P(Z ⩽ k − 1, Z = j) = P(Z = j).
It yields to

∆j(k) = P(Z = j)
λ

(P(Z ⩾ k + 1)
P(Z = k)

− P(Z ⩾ k)
P(Z = k − 1)

)
.

Let us prove that the second factor is negative. We call it (A) :

(A) def.= P(Z ⩾ k + 1)
P(Z = k)

− P(Z ⩾ k)
P(Z = k − 1)

.

We expend in series the probabilities that appear :

(A) = k!
λk

+∞∑

j=k+1

λj

j!
− (k − 1)!

λk−1

+∞∑

j=k

λj

j!
.

By indexing the sums, we get :

(A) =
+∞∑

j=1

λj
(

k!
(k + j)!

− (k − 1)!
(j + k − 1)!

)
.

But :

k!
(k + j)!

= 1
(k + 1)(k + 2) · · · (k + j)

.

So :

k!
(k + j)!

<
1

k(k + 1) · · · (k + j − 1)
= (k − 1)!

(j + k − 1)!
.

So (A) < 0, and we proved that

f{j}(k + 1)− f{j}(k) < 0.
• If j > k, then

P(Z ⩽ k, Z = j) = P(Z ⩽ k − 1, Z = j) = 0.
This time, we have

∆j(k) = P(Z = j)
λ

(P(Z ⩽ k − 1)
P(Z = k − 1)

− P(Z ⩽ k)
P(Z = k)

)
.

We cannot unfortunately use the previous case since we don’t
know if P(Z = k) < P(Z = k − 1), it depends on the position of
k with respect to λ. So, we will just repeat the same argument to
conclude of the negativity of the second factor :

(B) def.= P(Z ⩽ k − 1)
P(Z = k − 1)

− P(Z ⩽ k)
P(Z = k)

.

We have by expanding the terms :

(B) = (k − 1)!
λk−1

k−1∑

j=0

λj

j!
− k!
λk

k∑

j=0

λj

j!
.

We put the term in j = 0 of the second sum aside, and index the
second sum to have the familiar sum :

(B) =
k∑

j=1

1
λk−j

[ (k − 1)!
(j − 1)!

− k!
j!

]
− k!
λk
− k!
λk
.

It is familiar because it looks like the opposite of the sum (A), but
it is not because if the indexes. (B) is indeed negative since :

(B) =
k∑

j=1

k!
λk−j

[ 1
k(j − 1)!

− 1
j!

]
− k!
λk
,

and we sum for j ⩽ k, so

(B) ⩽
k∑

j=1

k!
λk−j

[ 1
j(j − 1)!

− 1
j!

]
− k!
λk

= −k!
λk

,

so (B) < 0, and ∆j(k) < 0.
• If j = k, we prove that ∆j(k) > 0. We have

P(Z ⩽ k, Z = k) = P(Z = k) and P(Z ⩽ k − 1, Z = k) = 0.
So,

∆k(k) = 1− P(Z ⩽ k)
λ

+ P(Z = k)P(Z ⩽ k − 1)
λP(Z = k − 1)

.

We can simplify using the fact that P(Z = k) = λ
k
P(Z = k− 1),

so

∆k(k) = 1− P(Z ⩽ k)
λ

+ P(Z ⩽ k − 1)
k

> 0.
This concludes the proof. □
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Proposition I.8 : Chen-Stein’s bound for total variation distance

i. Let λ > 0, and A ⊂ N. Then fA ∈ Ψ(λ), where

Ψ(λ) =
{
f : N −→ R

∣∣∣∣∣
∀i, j ∈ N, |f(i) − f(j)| ⩽ 1−e−λ

λ |i− j|
∀k ∈ N, |f(k)| ⩽ eλ

λ

}
.

ii. Let X a random variable and Z ∼ P(λ). Then :

sup
A⊂N

|P(X ∈ A) − P(Z ∈ A)| ⩽ sup
f∈Ψ(λ)

|E [λf(X + 1) −Xf(X)] |.

Proof : i. Let us see first that if A ∩B = ∅ then

fA⊔B = fA + fB .

As a consequence, we can write for every finite A ⊂ N :

fA =
∑

a∈A

f{a}.

• By the lemma, we have for a ̸= k, f{a}(k + 1)− f{a}(k) ⩽ 0,
so that we can consider the sum

∑
a∈A
k ̸=a

f{a}(k + 1) − f{a}(k),

which could be infinite. Hence, we have by additivity, and positivity of
f{k}(k + 1)− f{k}(k), whether k ∈ A or not :

fA(k+1)−fA(k) ⩽
∑

a∈A
k ̸=a

f{a}(k+1)−f{a}(k)+f{k}(k+1)−f{k}(k)

By negativity of the first term :

fA(k + 1)− fA(k) ⩽ f{k}(k + 1)− f{k}(k).
By the computation of the lemma :

fA(k + 1)− fA(k) ⩽ P(Z ⩾ k + 1)
λ

+ P(Z ⩽ k − 1)
k

.

And we expand the second sum :

fA(k + 1)− fA(k) ⩽ P(Z ⩾ k + 1)
λ

+ 1
k

k−1∑

j=0

λj

j!
.

We index :

fA(k + 1)− fA(k) ⩽ P(Z ⩾ k + 1)
λ

+ 1
λ

k∑

j=1

λj

k(j − 1)!
.

Finally, we use the fact that k ⩾ j in the sum to have :

fA(k + 1)− fA(k) ⩽ P(Z ⩾ k + 1)
λ

+ 1
λ

k∑

j=1

λj

j!
= P(Z > 0)

λ
.

That is

fA(k + 1)− fA(k) ⩽ P(Z ⩾ k + 1)
λ

+ 1
λ

k∑

j=1

λj

j!
= 1− e−λ

λ
.

We prove the inequality without the absolute values for every
A ⊂ N. We just need to introduce it to conclude.
• By additivity, we observe that for every A ⊂ N (and since

fN = 0) that :

fA(k + 1) + fAc (k + 1) = fA(k) + fAc (k).
So,

fA(k + 1)− fA(k) = − (fAc (k + 1)− fAc (k)) .
Suppose that fA(k + 1)− fA(k) ⩽ 0, then :

|fA(k + 1)− fA(k)| = fAc (k + 1)− fAc (k) ⩽ 1− e−λ

λ
.

And if fA(k+ 1)− fA(k) ⩾ 0, the previous case concludes to the
inequality. We proved that for every k ∈ N and A ⊂ N :

|fA(k + 1)− fA(k)| ⩽ 1− e−λ

λ
.

So, by triangular inequality, it follows that fA ∈ Ψ(λ).
ii. By Stein’s equation :

sup
A⊂N

|P(X ∈ A)− P(Z ∈ A)| = sup
A⊂N

|E [λfA(X + 1)−XfA(X)]| .

And since fA ∈ Ψ(λ), we have

sup
A⊂N

|P(X ∈ A)− P(Z ∈ A)| ⩽ sup
f∈Ψ(λ)

|E [λf(X + 1)−Xf(X)]| .

We proved our Stein’s bound. □

We can prove by this way our classic theorem about Poisson approximation.

Theorem I.3 : Poisson approximation
Let (Yn)n a sequence of random variables, (pn)n a sequence of elements of ]0, 1[ such that :

(i) Yn ∼ B(n, pn) ;
(ii) pn −−−−−→

n→+∞
0 ;

(iii) npn −−−−−→
n→+∞

λ > 0.

Then (Yn)n converges in total variation sense (so in law) to P(λ).
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Proof : We consider Xn
1 , · · · , Xn

n independent of law B(pn) such
that

Yn =
n∑

k=1

Xn
k .

And we consider Vn = YN − Xn
1 . Then for all f : N −→ R

bounded :

E[Ynf(Yn)] =
n∑

k=0

kf(k)
(n
k

)
pkn(1− pn)n−k.

The term k = 0 is zero. Using the relation

k
(n
k

)
= n
(n− 1
k − 1

)
,

we get by indexing the sum :

E[Ynf(Yn)] = npn

n−1∑

k=0

f(k + 1)
(n− 1

k

)
pkn(1− pn)n−1−k.

In terms of Vn
law= Yn−1, we have :

E[Ynf(Yn)] = npnE[f(Vn + 1)].
Hence, by Chen-Stein’s bounds, we get, if Z ∼ P(λ) :

sup
A⊂N

|P(Yn ∈ A)− P(Z ∈ A)|

⩽ sup
f∈Ψ(λ)

|λE[f(Yn + 1)]− npnE[f(Vn + 1)]|.

By adding and substracting by λE[f(Vn + 1)], we get :

sup
A⊂N

|P(Yn ∈ A)− P(Z ∈ A)|

⩽ |λ| sup
f∈Ψ(λ)

|E [f(Yn + 1)− f(Vn + 1)]|

+ |npn − λ| sup
f∈Ψ(λ)

|E[f(Vn + 1)]|

For the first term, we have for all f ∈ Ψ(λ) :

|E [f(Yn + 1)− f(Vn + 1)]| ⩽ 1− e−λ

λ
|E[Xn

1 ]| = 1− e−λ

λ
pn.

Hence the first term goes to zero. For the second, we have for all
f ∈ Ψ(λ) :

|npn − λ| sup
f∈Ψ(λ)

|E[f(Vn + 1)]| ⩽ eλ

λ
|npn − λ|,

so the second term also goes to zero. So, we proved that

sup
A⊂N

|P(Yn ∈ A)− P(Z ∈ A)|

⩽
(

1− e−λ) pn + eλ

λ
|npn − λ|.

This proves our theorem. □

II Univariate normal approximations
II.1 General approximations in Malliavin calculus

In this part, we will estimate some distance with respect with the term ⟨DF,−DL−1F ⟩H, coming from integration
by parts formula for Ornstein-Ulhenbeck generator. We will see later why it is relevant to do so. We begin by a
lemma giving an expression of DL−1F in terms of (Pt)t.

Lemma II.1 : An expression of the derivative of the pseudo inverse

Let F ∈ D1,2 with E[F ] = 0. Then L−1F ∈ D1,2 and

−DL−1F =
ˆ +∞

0
e−tPtDF dt.

Proof of the lemma : First, let us see that the decomposition in
Wiener chaos of L−1F is

L−1F = −
+∞∑

p=1

JpF

p
.

So,

+∞∑

p=0

pE
[∣∣JpL−1F

∣∣2
]

=
+∞∑

p=1

E
[
JpF

2
]
.

So,

+∞∑

p=0

pE
[∣∣JpL−1F

∣∣2
]
⩽

+∞∑

p=0

E
[
JpF

2
]
< +∞.

We notice that L−1F is always in D1,2, whenever F ∈ D1,2 or
not. Moreover, we have the following decomposition in Wiener chaos
(in H) of DL−1F :

DL−1F =
+∞∑

p=1

1
p
Jp−1(DF ).

On the other hand, we have

PtDF =
+∞∑

p=0

e−ptJp(DF ).

So, if we integrate (and switch sum and integral in L2(Ω→H)) :

ˆ +∞

0
e−tPtDF dt =

+∞∑

p=0

(
ˆ +∞

0
e−(p+1)t dt

)
Jp(DF ).

We compute this integral (it is equal to 1
p+1 ) and conclude on

the equality we expect. □
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Proposition II.1 : Start of the game

i. Let F ∈ D1,2 such that E[F ] = 0 and E[F 2] = 1, and f : R −→ R of class C1 and K-Lipschitz. Then

|E [f ′(F ) − Ff(F )]| ⩽ KE
[∣∣1 −

〈
DF,−DL−1F

〉
H
∣∣] .

ii. Moreover, if F ∈ D1,4 then
〈
DF,−DL−1F

〉
H ∈ L2 and

E
[∣∣1 −

〈
DF,−DL−1F

〉
H
∣∣] ⩽

√
Var (⟨DF,−DL−1F ⟩H).

Proof : i. We note :

(A) def.=
∣∣E [f ′(F )− Ff(F )

]∣∣ .
Since f is C1 with its derivative being bounded, we can apply

the integration by parts formula for the pseudo-inverse to compute
E[F (F )] :

(A) =
∣∣E [f ′(F )

(
1−
〈

DF,−DL−1F
〉

H

)]∣∣ .
Hence by triangular inequality, and since f is K-Lipschitz :

(A) ⩽ KE
[∣∣1− 〈DF,−DL−1F

〉
H

∣∣] .
ii. We suppose that F ∈ D1,4. Let us prove that〈

DF,−DL−1F
〉

H ∈ L
2. We have L−1F ∈ D1,4 too, since the series∑

n⩾1 nE[JnF 4] is convergent. Then, we can compute the derivative
of L−1F . By Cauchy-Schwarz, we have :

E
[〈

DF,−DL−1F
〉2

H

]
⩽ E
[
∥DF∥2

H
∥∥DL−1F

∥∥2
H

]
.

By Cauchy Schwarz again, we have :

E
[〈

DF,−DL−1F
〉2

H

]
⩽ E
[
∥DF∥4

H
] 1

2 E
[∥∥DL−1F

∥∥4
H

] 1
2
.

We can estimate the norm of DL−1F , by the lemma :

E
[∥∥DL−1F

∥∥4
H

]
= E

[∥∥∥∥
ˆ +∞

0
e−tPtDF dt

∥∥∥∥
4

H

]
.

By Jensen inequality on the measure e−t1R+ dt :

E
[∥∥DL−1F

∥∥4
H

]
⩽ E

[
ˆ +∞

0
e−t∥PtDF∥4

Hdt
]
.

We switch expectation and integral and use the contraction pro-
perty of (Pt) :

E
[∥∥DL−1F

∥∥4
H

]
⩽
ˆ +∞

0
e−tE

[
∥DF∥4

H
]

dt.

Since
´

R+
e−t dt = 1, we finally have :

E
[∥∥DL−1F

∥∥4
H

]
⩽ E
[
∥DF∥4

H
]
.

And so :

E
[〈

DF,−DL−1F
〉2

H

]
⩽ E
[
∥DF∥4

H
]
< +∞.

We proved that
〈

DF,−DL−1F
〉

H ∈ L
2. But, by integration by

parts formula, we have this time :

E
[〈

DF,−DL−1F
〉

H

]
= E[F 2] = 1.

So, by Cauchy-Schwarz inequality, we have :

E
[∣∣1− 〈DF,−DL−1F

〉
H

∣∣] ⩽ Var
(〈

DF,−DL−1F
〉

H

) 1
2 .

This concludes the proof. □

It is consequently possible to use our Stein’s bounds to have the following proposition.

Proposition II.2 : Estimations for the different distances in terms of Malliavin calculus

Let F ∈ D1,2 such that E[F ] = 0 and E[F 2] = σ2 > 0. Let N ∼ N (0, σ2). Then, we have :
(i) For Wasserstein distance :

dW(F,N) ⩽
√

2
σ2π

E
[∣∣σ2 −

〈
DF,−DL−1F

〉
H
∣∣] .

(ii) For total variation distance :

dTV(F,N) ⩽ 2
σ2E

[∣∣σ2 −
〈
DF,−DL−1F

〉
H
∣∣] .

(iii) For Kolmogorov distance :

dKol(F,N) ⩽ 1
σ2E

[∣∣σ2 −
〈
DF,−DL−1F

〉
H
∣∣] .
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Proof : The computations are likely the same as those for esti-
mating the distance between centred Gaussian random variables.

A. First, let us do it for σ = 1. This is just application of what
we just saw. Indeed, by Stein’s bound, we have :

dW(F,N) ⩽ sup
f∈FW

∣∣E [f ′(F )− Ff(F )
]∣∣ ,

where FW is the set of C1 functions being
√

2
π

-Lipschitz. Hence,
by the previous proposition :

dW(F,N) ⩽

√
2
π
E
[∣∣1− 〈DF,−DL−1F

〉
H

∣∣] .
Same argument for dTV (where f is 2-Lipschitz) and for dKol

(where f is 1-Lipschitz).
B. We can prove one by one our inequalities for general σ > 0.
i. By definition :

dW(F,N) = sup
h∈Lip(1)

|E[h(F )]− E[h(N)]|.

We would use the Stein’s equation and the previous proposition,
but we need to have random variables with variance equal to 1. To
do this, we just need to use the bijection h 7−→ h(σ·) between Lip(1)
and Lip(σ) :

dW(F,N) = sup
h∈Lip(σ)

∣∣∣E
[
h

(
F

σ

)]
− E
[
h

(
N

σ

)]∣∣∣ .

By Stein’s equation, and by seeing that fh ∈ C1 ∩ Lip
(
σ
√

2
π

)

if h ∈ Lip(σ) (we proved it for σ = 1, we conclude by scaling), we
finally have :

dW(F,N) ⩽ sup
f∈C1∩Lip

(
σ

√
2
π

)
∣∣∣E
[
f ′
(
F

σ

)
− F

σ
f

(
F

σ

)]∣∣∣ .

We are exactly in the case A., so :

dW(F,N) ⩽ σ

√
2
π
E
[∣∣∣1− 1

σ2

〈
DF,−DL−1F

〉
H

∣∣∣
]
.

ii. The computations are the same, and even are easier since
B 7−→ σB is a bijection between B(R) and itself. So, we have di-
rectly

dTV(F,N) = dTV

(
F

σ
,
N

σ

)
,

and we conclude by using A.. Same for dKol. □

II.2 A first estimation on Wiener chaos
Before starting, remind the Prohorov theorem, stated as a lemma here.

Lemma II.2 : Prohorov theorem
Let (Pn)n a sequence of probabilities on Rd. We suppose that (Pn)n is uniformly tight :

∀ε > 0,∃K ⊂ Rd compact,∀n ∈ N,Pn(K) ⩾ 1 − ε.

Then (Pn)n admits a subsequence that converges tightly.

In other words, if a sequence of random variables is tight, it converges in law, up to a subsequence. This part
is dedicated to precise the estimations made in general in previous subsection, in the case where F is in a Wiener
chaos. Let us begin by a theorem known as method of moments.

Theorem II.1 : Method of moments
Let q ⩾ 2, σ > 0 and (Fn)n ∈ (Hp)N. We suppose that

E
[
F 2

n

]
−−−−−→
n→+∞

σ2.

Then, the following assertions are equivalent :
(i) The sequence (Fn)n converges in law to N (0, σ2) ;
(ii) If N ∼ N (0, σ2), then

∀j ⩾ 3,E[F j
n] −−−−−→

n→+∞
E[N j ].

We have here a quite powerful way to determine if a sequence converges in law to a Gaussian random variable.

Proof : The hypothesis give a lot of information before starting
proving the equivalence. First, since (E[F 2

n ])n is bounded, we have by
hypercontractivity :

∀η ⩾ 1, sup
n∈N

E [|Fn|η ] < +∞.

Second, by Markov inequality, (Fn)n is tight. Indeed, let K > 0.
Then :

P(|Fn| > K) ⩽
supn∈N E[F 2

n ]
K2 .

By Prohorov theorem, (Fn)n admits a subsequence that converges
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in law.
[=⇒] We suppose that (Fn)n converges in law to N ∼ N (0, σ2).

By the continuous mapping theorem, this is the case of every F jn. So,
for all h : R −→ R continuous and bounded, we have

E
[
h(F jn)

]
−−−−−→
n→+∞

E
[
h(Nj)

]
.

Let (hp)p a sequence of continuous bounded functions on R de-
fined by :

•p

•
p

•−p

•
−p

Then (hp)p converges pointwise to the identity map. We have the
following domination :

∀p ∈ N, |hp(F jn)| ⩽ |Fn|j .
And we know by hypercontractivity that F jn ∈ L1, so we have by

dominated convergence :

E
[
hp(F jn)

]
−−−−−→
p→+∞

E[F jn].

By the same argument, we have

E
[
hp(Nj)

]
−−−−−→
p→+∞

E[Nj ].

Hence, we can conclude about the expected convergence. We just
need to cut in three :

∣∣E[Nj ]− E[F jn]
∣∣

⩽
∣∣E [Nj

]
− E[hp(Nj)]

∣∣+
∣∣E [hp(Nj)

]
− E[hp(F jn)]

∣∣
+

∣∣E [hp(F jn)
]
− E[F jn]

∣∣ .

For p big enough, the previous dominated convergences shows
that the first and last terms are as small as we want. The middle term
is also small as we want for n big enough by the convergence in law.
We conclude in our first implication.

[⇐=] By our remark in the beginning of the proof, there exists a
subsequence ϕ and a random variable Y such that

Fϕ(n)
law−−−−−→

n→+∞
Y.

Then, Y admits moment at every order. Indeed, if we consider
the same approximation (hp)p that previously, we have by monotone
convergence (|hp| ⩽ |hp+1|) that

E
[
|hp(Y j)|

]
−−−−−→
p→+∞

E
[
|Y |j
]
.

But, we have |hp(x)| ⩽ |x| and using the convergence in law of
Fϕ(n) to Y , we have :

∀p ∈ N,E
[
|hp(Y j)|

]
⩽ sup
n∈N

E
[
|Fn|j

]
.

So, by letting [p→ +∞], we have :

E
[
|Y |j
]
⩽ sup
n∈N

E
[
|Fn|j

]
< +∞.

So Y admits moments at every order. By dominated convergence
(same argument as previously), for all j ⩾ 2 :

E
[
F j
ϕ(n)

]
−−−−−→
n→+∞

E[Y j ].

By unicity of the limit, we have :

∀j ∈ N,E
[
Y j
]

= E
[
Nj
]
.

Like we saw in Stein’s lemma, it means that Y ∼ N (0, σ2). □

II.3 Fourth moment theorem
We can do better that this theorem, by using Stein’s method. We will prove that the condition (ii) is equivalent

to the same condition but for only j = 4. That is the fourth moment theorem.

Lemma II.3 : Product formula
Let H = L2(T,B, µ), with µ an atomless measure on the σ-algebra B. Let p, j ∈ N, f ∈ L2

S(T p), g ∈ L2
S(T p+j).

For r ⩽ p, we name the r-th contraction of f and g the map f ⊗r g ∈ L2(T 2(p−r)+j) defined by :

f ⊗r g(t1, · · · , tp−r, s1, · · · , sp+j−r) def.=
ˆ

T r
f(t1, · · · , tp−r, u1, · · · , ur)

· g(s1, · · · , sp+j−r, u1, · · · , ur)
dµ(u1) · · · dµ(ur).

Then, we can decompose in Wiener chaos the random variable Ip(f)Ip+j(g) :

Ip(f)Ip+j(g) =
p∑

r=0
r!
(
p

r

)(
q

r

)
I2(p−r)+j (f ⊗r g) .

Note : If f, g ∈ L2
S, then f ⊗r g is not symmetric in general. We denote by f⊗̃rg the symmetrization of f ⊗r g.

Proof of the lemma : The proof is the same the one for Her-
mite polynomials in the one-dimensional case. By hypercontractivity,
we know that Ip(f) ∈ ∩p⩾1Lp(P). Moreover, by the characterization
of the domain Dp,2 with the series representation, we have in fact
that Ip(f) ∈ D∞,2, for every p ∈ N and f ∈ L2(T p). We have even

better : we have in fact Ip(f) ∈ D∞,q , for every q ∈ N∗. This is a
consequence of Meyer’s inequality, stating that the iterated divergence
is continuous :

δp : Dk,q(L2(T p)) −→ Dk−p,q .
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We admit it here. Hence, it follows that the product Ip(f)Ip+j(g)
belongs to D∞,2. Hence, we can apply the Strook formula :

Ip(f)Ip+j(g) =
+∞∑

s=0

Is (E [Ds• {Ip(f)Ip+j(g)}])
s!

.

We apply the Leibniz rule :

Ip(f)Ip+j(g) =
+∞∑

s=0

Is
(
E
[∑s

k=0

(
s
k

)
DkIp(f)⊗Ds−kIp+j(g)

])

s!
.

The computation of the expectation is really the same as the case
of Hermite polynomials, in section I. We refer to this to conclude the
proof of this lemma. □

Remember that in the Wiener case, for F = Iq(f), we have :

〈
DF,−DL−1F

〉
H = ∥DF∥2

H
q

.

Here is why we want to show the following inequality.

Lemma II.4 : An estimation for the variance of the derivative of an element in a chaos
Let q ⩾ 2 and F ∈ Hq. Then

Var
(

∥DF∥2
H

q

)
⩽ q − 1

3q

(
E
[
F 4]− 3E

[
F 2]2) ⩽ (q − 1)Var

(
∥DF∥2

H
q

)
.

Proof of the lemma : The idea is to expend every term in Wiener
chaos and to compare those expansions.
• We have

∥DF∥2
H =

ˆ

T
DtF 2 dµ(t).

Since F = Iq(f), we have DtF = qIq−1(f(t, ·)). Hence,

∥DF∥2
H = q2

ˆ

T
Iq−1(f(t, ·))2 dµ(t).

By product formula :

∥DF∥2
H = q2

ˆ

T

q−1∑

r=0

r!
(q − 1

r

)2
I2(q−1−r)(f(t, ·)⊗r f(t, ·)) dµ(t).

By linearity and continuity of Iq−1 (it is an isometry), we have

∥DF∥2
H = q2

q−1∑

r=0

r!
(q − 1

r

)2
I2(q−1−r)(f ⊗r+1 f).

By indexing the sum again :

∥DF∥2
H = q2

q∑

r=1

(r − 1)!
(q − 1
r − 1

)2
I2(q−r)(f ⊗r f).

We use the relation

q(r − 1)!
(q − 1
r − 1

)2
= r

q
r!
(q
r

)2
,

to conclude that, we have our first expansion :

∥DF∥2
H =

q∑

r=1

r · r!
(q
r

)2
I2(q−r)(f ⊗r f).

• We can compute its variance. Indeed, we have with the term
r = q that

E
[
∥DF∥2

H
]

= q2(q!)2∥f∥4
L2(Tq) = q2E[F 2]2.

Then, by independence of the Iq :

Var
(
∥DF∥2

H
)

=
q−1∑

r=1

r2(r!)2
(q
r

)4
(2(q − r))!

∥∥f⊗̃rf
∥∥2
L2(T2(q−r) ,

where ⊗̃r means the symmetrization of the tensor product. We
keep this expression aside, and we will use it later for the comparison.
• Let us try to do the same kind of computations for F 4. Since

F ∈ Hq , LF = −qF , so

E
[
F 4
]

= −1
q
E
[
LF · F 3

]
.

By using L = −δD, we have

E
[
F 4
]

= 1
q
E
[
δDF · F 3

]
.

By duality :

E
[
F 4
]

= 1
q
E
[〈

DF,DF 3
〉

H

]
.

By chain rule, DF 3 = 3F 2DF so :

E
[
F 4
]

= 3
q
E
[
F 2∥DF∥2

H
]
.

So, to conclude, we will use the expansion in Wiener chaos of each
factor.
• We have, by product formula again :

F 2 =
q∑

r=0

r!
(q
r

)2
I2(q−r)(f ⊗r f).

So,

E
[
F 2∥DF∥2

H
]

=
q∑

r=1

r(r!)2
(q
r

)2
(2(q − r))!

∥∥f⊗̃rf
∥∥
L2(T2(q−r)) .

And so

E[F 4] = 3
q

q∑

r=1

r(r!)2
(q
r

)2
(2(q − r))!

∥∥f⊗̃rf
∥∥
L2(T2(q−r)) .

By isolating the term r = q, we find 3E[F 2]2. Hence, we have our
second expression :

81 Jérémy Zurcher



M2 Part II - Stein’s method

E[F 4]− 3E[F 2]2

= 3
q

q−1∑

r=1

r(r!)2
(q
r

)2
(2(q − r))!

∥∥f⊗̃rf
∥∥
L2(T2(q−r)) .

• Now that we have the expansion of every terms present in our
expected inequality, we simply use :

◁ the fact that r ⩽ q − 1 in the expression of Var
(
∥DF∥2

H
)

to
have

Var
(
∥DF∥2

H
)
⩽ q(q − 1)

3
(
E[F 4]− 3E[F 2]2

)
.

◁ the fact that r ⩽ r2 in the expansion of E[F 4] − 3E[F 2]2 to
have :

E[F 4]− 3E[F 2]2 ⩽ 3
q

Var
(
∥DF∥2

H
)
.

This concludes the proof of this inequality. □

Theorem II.2 : Fourth moment theorem
Let q ⩾ 2 and (Fn)n a sequence of elements of Hq. We suppose that

E
[
F 2

n

]
−−−−−→
n→+∞

σ2 > 0.

Then the following assertions are equivalent.
(i) (Fn)n converges in law to N ∼ N (0, σ2).
(ii) The sequence (E[F 4

n ])n converges to E[N4] :

E
[
F 4

n

]
−−−−−→
n→+∞

3σ4 = E[N4].

(iii) The variance of the norm of the Malliavin derivative goes to zero :

Var
(

∥DFn∥2
H

)
−−−−−→
n→+∞

0.

Proof : [(i) =⇒ (ii)] This implication is true by the moments
method theorem, applied for j = 4.

[(ii) ⇐⇒ (iii)] This equivalence is true by the previous lemma.
[(iii) =⇒ (i)] Here’s the interesting part. Remember that we pro-

ved that

dKol(Fn, N) ⩽ 1
E[F 2

n ]
E
[∣∣E [F 2

n

]
−
〈

DFn,−DL−1Fn
〉

H

∣∣] .
Since Fn ∈ Hq , we have by integration by parts formula for the

pseudo inverse that

E[F 2
n ] = E

[〈
DFn,−DL−1Fn

〉
H

]
.

So, we get by Cauchy-Schwarz inequality :

dKol(Fn, N) ⩽ 1
E[F 2

n ]2

√
Var
(
⟨DFn,−DL−1Fn⟩H

)
.

But, we have in fact :

〈
DFn,−DL−1Fn

〉
H = 1

q
∥DFn∥2

H.

So, we have :

dKol(Fn, N) ⩽ 1
E[F 2

n ]2

√
Var
(1
q
∥DFn∥2

H

)
.

So the Kolmogorov distance between (Fn)n and N goes to zero,
and the density function of N is continuous. We conclude that (Fn)n
converges in law to N . □

We can prove the implication (iii) =⇒ (i) of the theorem by using the Prohorov theorem. We already used it
for the method of moments.

Proof : We suppose that

Var
(
∥DFn∥2

H
)
−−−−−→
n→+∞

0.

Let us show that (Fn)n converges in law to N (0, σ2).
• First, let us see that if φn is the characteristic function of Fn,

then φn is differentiable with

φ′
n(t) = iE

[
Fne

itFn
]
.

By integration by parts formula for the pseudo inverse, we get :

φ′
n(t) = tE

[
eitFn

〈
DFn,−DL−1

〉]
.

Since Fn ∈ Hq , we get :

φ′
n(t) = −t

q
E
[
eitFn∥DFn∥2

H
]
.

• Since E[F 2
n ] −−−−−→

n→+∞
σ2 > 0, the sequence (Fn)n is tight (we

just need to apply Markov’s inequality). Hence, there exists a subse-
quence of (Fn)n that converges in law. To conclude, we just need to
show that every subsequence of (Fn)n that converges in law admits
N (0, σ2) as limit (hence {Fn, n ∈ N} admits one adherence value and
is relatively compact, so (Fn)n converges). We set a random variable
Z and an increasing map ψ : N −→ N such that

Fψ(n)
law−−−−−→

n→+∞
Z.

Then, by using the same type of arguments than the one for the
moment theorem, we have E[Z2] < +∞, since E[F 2

n ] goes to σ2.
Hence, φZ is C1, with φ′

ψ(n) converging pointwise to φ′
Z , since by

continuous mapping theorem
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Fψ(n)e
itFψ(n) law−−−−−→

n→+∞
ZeitZ .

and E[Z2] < +∞ (like in the moments method theorem, we ap-
proach the identity by its truncation to prove it). Moreover,

φ′
n(t) + σ2tφn(t) = tE

[
eitFn

(
−∥DFn∥2

H
q

+ σ2
)]

.

So, since E
[
∥DFn∥2

H
]

= qE[F 2
n ], we have :

∣∣φ′
n(t) + tφn(t)

∣∣ ⩽ t

√
Var
(∥DFn∥H

q

)
+ t
√

E[F 2
n ]− σ2.

Since the variance goes to zero, we conclude that

φ′
Z(t) + σ2tφZ(t) = 0.

Since φZ(0) = 1, we conclude that Z ∼ N (0, σ2). □

Note : By the computations made on the lemma, the convergence (i) is also equivalent to :

∥fn ⊗r fn∥L2(T 2(q−r) −−−−−→
n→+∞

0,

where Fn = Iq(fn).
We can express the same kind of theorem for a sequence in different Wiener chaos.

Corollary II.1 : Fourth moment theorem for various chaos

Let (Fn)n ∈ L2(P)N a sequence of random variables such that Fn ∈ Hq(n). We suppose that

E
[
F 2

n

]
−−−−−→
n→+∞

σ2 > 0.

And we suppose that

E
[
F 4

n

]
−−−−−→
n→+∞

3σ4.

Then, (Fn)n converges in the Kolmogorov sens to N (0, σ2), so converges in law.

Proof : Once again, we simply use the lemma. Indeed, we still
have

dKol(Fn, N) ⩽ 2
E[F 2

n ]

√
Var
(
∥DFn∥2

H
q(n)

)
.

By the lemma :

dKol(Fn, N) ⩽ 2
E[F 2

n ]

√
q(n)− 1

3q(n)
(
E [F 4

n ]− 3E [F 2
n ]2
)
.

Since the sequence
(
n−1
3n

)
n

is bounded by 1
3 , we get :

dKol(Fn, N) ⩽ 2√
3E[F 2

n ]

√(
E [F 4

n ]− 3E [F 2
n ]2
)
,

which goes to zero when [n→ +∞]. □

An application of this is the fact that we can have a second overview of the law of multiple integrals (first one
is : their laws are absolutely continuous with respect to the Lebesgue measure). They are not Gaussian for chaos
with order greater than 2.

Corollary II.2 : Non-Gaussian multiple integrals

Let q ⩾ 2 and F ∈ Hq. We suppose that E[F 2] = σ2 > 0. Then E[F 4] > 3σ4. Hence, F is not a Gaussian
random variable.

Proof : By the lemma :

E[F 4]− 3E[F 2]2 ⩾ q(q − 1)
3

Var
(
∥DF∥2

H
)
⩾ 0.

Suppose that we have equality. Then DF = 0 almost everywhere

and almost surely so that F = E[F ] = 0 almost surely. This contra-
dicts the fact that E[F 2] > 0, so we don’t have equality, and we have
E[F 4] > 3E[F 2]2. Since every Gaussian random variable satisfies the
equality, F cannot be a Gaussian random variable. □

II.4 Estimation on general case : second order Poincaré inequality
We want to use the fourth moment theorem to find new conditions to assure a convergence in law to N (0, 1).

We begin by a consequence of our inequalities of distance in terms of Malliavin calculus.
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Proposition II.3 : A first condition for converging in law to a Gaussian law

Let (Fn)n ⊂ D1,2 such that E[Fn] = 0. We suppose that

E
[
F 2

n

]
−−−−−→
n→+∞

σ2 > 0.

Then, if

E
[∣∣σ2 −

〈
DFn,−DL−1Fn

〉
H
∣∣] −−−−−→

n→+∞
0,

then (Fn)n converges in law to N (0, σ2).

The following result is the key for the condition we will derive later. It generalizes the one we saw in the
one-dimensional case. Remember that we chose H = L2(T,B, µ), with µ a atomless measure.

Theorem II.3 : Second order Poincaré inequality

Let F ∈ D2,4 such that E[F ] = 0 and E[F 2] = σ2 > 0. Then,

dTV(F,N (0, σ2)) ⩽ 3
σ2E

[∥∥D2F
∥∥4

op

] 1
4 E
[∥∥D2F

∥∥4
L2(T 2)

] 1
4
,

where

∥∥D2F
∥∥

op
def.= sup

∥f∥H=1

[
ˆ

T

∣∣∣∣
ˆ

T

f(s)D2
s,tF dµ(s)

∣∣∣∣
2

dµ(t)
] 1

2

is the operator norm of f 7−→
´

T
f(s)D•,sF dµ(s) ∈ L2(T ). We can moreover have an estimation of it :

E
[∥∥D2F

∥∥4
op

]
⩽ E

[∥∥D2F ⊗1 D2F
∥∥2

L2(T 2)

]
.

Recall that if f, g ∈ L2(T 2) :

f ⊗1 g(x, y) def.=
ˆ

T

f(x, t)g(y, t) dµ(t).

With it, here comes the criterion we look for.

Proposition II.4 : Convergence in law with Malliavin calculus

Let (Fn)n ⊂ D2,4 such that E[Fn] = 0. We suppose that :
(i) E[F 2

n ] −−−−−→
n→+∞

σ2 > 0 ;

(ii) supn⩾1 E
[
∥DFn∥4

L2(T )

]
< +∞ ;

(iii) E
[∥∥D2Fn

∥∥4
op

]
−−−−−→
n→+∞

0.

Then (Fn)n converges in law (and in total variation distance) to N (0, σ2).

Note : To prove (iii), it is enough to prove that

E
[∥∥D2Fn ⊗1 D2Fn

∥∥2
L2(T 2)

]
−−−−−→
n→+∞

0.

Proof : Let us note σ2
n = E[F 2

n ]. Then :

dTV(Fn,N (0, σ2)) ⩽ dTV(Fn,N (0, σ2
n))

+ dTV(N (0, σ2
n),N (0, σ2)).

By Poincaré’s inequality, and by the estimation of the total varia-
tion for Gaussian random variables, we have

dTV(Fn,N (0, σ2))

⩽ 3
σ2
n
E
[∥∥D2Fn

∥∥4
op

] 1
4
E
[∥∥D2Fn

∥∥4
L2(T2)

] 1
4

+ 2|σ2−σ2
n|

max{σ2
n,σ

2} .

Hence, the total variation goes to zero, so as the Kolmogorov dis-
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tance. Since the law N (0, σ2) has a continuous density, we conclude that (Fn)n converges in law to N (0, σ2). □

III Multivariate Stein’s lemma and multivariate estimations
Here, we will generalize all the concepts we saw in previous section in multidimensional case. We will be quick

on the proofs, the ideas are the same, it is simply the popping up of the differential calculus that will make the
difference between the previous section and this one. The song remains the same.

III.1 Multidimensional Stein’s lemma, Stein’s equation, Stein’s bound

Lemma III.1 : Multidimensional Stein’s lemma
Let N = (N1, · · · , Nd) a random vector, C ∈ S+

n (R). The following are equivalent :
i. The random vector N follows Nd(0, C) ;
ii. For all f : Rd −→ R C2

b ,

E [⟨N,∇f(N)⟩] = E [Tr (C Hf(N))] ,

where Hf(x) is the Hessian matrix of f taken in x ∈ Rd.

We can prove it by the same way than the one dimensional case. We could use the partial differential equation
satisfied by the characteristic function of a N (0, C) :

∇φ(t) = φ(t)Ct.

Or use the fact that the N (0, C) is uniquely known by knowing the joint moments. In the following, we consider
the Hilbert-Schmidt norm :

∀A,B ∈ Md(R), ⟨A,B⟩HS
def.= Tr

(
tAB

)
.

Definition III.1
Let C ∈ S+

n (R), N ∼ Nd(0, C) and h : Rd −→ R such that E[|h(N)|] < +∞. We call Stein’s equation the
partial differential equation

Tr(C Hf(x)) − ⟨x,∇f(x)⟩ = h(x) − E[h(N)],

where f ∈ C2(Rd,R) is the unknown.

Proposition III.1 : A solution in the Lipschitz case

Let C ∈ S+
n (R), N ∼ Nd(0, C) and h : Rd −→ R being K-Lipschitz. Then

fh(x) def.=
ˆ +∞

0
E
[
h(N) − h

(
e−tx+

√
1 − e−2tN

)]
dt

is a solution of the Stein’s equation. Moreover, fh satisfies

sup
x∈Rd

∥Hfh(x)∥HS ⩽
√
dH
∥∥C−1∥∥

op∥C∥ 1
2
op,

where for all A ∈ Md(R) :

∥A∥op = sup
∥x∥=1

∥Ax∥.
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Proposition III.2 : Estimation of the Wasserstein distance

Let F ∈ L2 a random vector. Then, if N ∼ N (0, C) :

dW(F,N) ⩽ sup
f∈Fd

W(C)
|E [Tr(C Hf(F )) − ⟨F,∇f(F )⟩]| ,

where

Fd
W(C) def.=

{
f ∈ C2(Rd,R), sup

x∈Rd
∥Hf(x)∥HS ⩽

√
dH
∥∥C−1∥∥

op∥C∥ 1
2
op

}
.

III.2 Estimations on general case with Malliavin calculus
Here’s the start of game for multi-dimensional case.

Proposition III.3 : Start of the multi dimensional game.

Let F = (F1, · · · , Fn) a random vector with entries taking values in D1,4. Then for all i, j ∈ J1, dK,〈
DFj ,−DL−1Fi

〉
H ∈ L2(P). Moreover, for all C ∈ S+

d (R) :

dW(F,N (0, C)) ⩽
√
d
∥∥C−1∥∥

op∥C∥ 1
2
op

√√√√
d∑

i,j=1
E
[(
Ci,j − ⟨DFj ,−DL−1Fi⟩H

)2
]
.

This proposition gives a first criterion, which looks like the one we derived at the end of the previous section.

Proposition III.4 : A criterion for convergence in law with multi dimensional Malliavin calculus

Let (Fn)n a sequence of centered random vectors such that for every i ∈ J1, dK, Fn(i) ∈ D2,4. Let C ∈ S+
d (R).

If we suppose :
(i) For all i, j ∈ J1, dK,

E[Fn(i)Fn(j)] −−−−−→
n→+∞

Ci,j .

(ii) For all i ∈ J1, dK :

sup
n∈N

E
[
∥DFn(i)∥4

H

]
< +∞.

(iii) For all i ∈ J1, dK :

E
[∥∥D2Fn(i) ⊗1 D2Fn(i)

∥∥
H⊗2

]
−−−−−→
n→+∞

0.

Then (Fn)n converges in law to N (0, C).

III.3 Estimations on Wiener chaos
Until now, besides the differential calculus, we did not learn something new about estimations here. We will

explain here the new things we have for random vectors with entries in a Wiener chaos.

Theorem III.1 : Convergence in law in Wiener chaos
Let d ⩾ 1, q1, · · · , qd ⩾ 1 and F = (F (1), · · · , F (d)) ∈ Hq1 × · · · × Hqd a centered random vector. Let
C = (E[FiFj ])i,j ∈ Sd(R). If we suppose that C ∈ S++

d (R), then there exists a map ψ : Rd × Rd −→ R
depending only on the sequence (qi)i such that
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ψ(x, y) −−−→
x→0

0,

and if we set

m(F ) def.= ψ






E
[
F (1)4]− 3E

[
F (1)2]2

...
E
[
F (d)4]− 3E

[
F (d)2]2


 ,



E
[
F (1)2]

...
E
[
F (d)2]





 ,

then

dW(F,N) ⩽
√
d
∥∥C−1∥∥

op∥C∥ 1
2
opm(F ).

Note that the constant m(F ) only depends on the vector F , and not on C. We can give an explicit expression
for ψ, we could deduce it by expending in Wiener chaos the powers of each component of F .

Corollary III.1 : Joint convergence in law
Let Fn = (Fn(1), · · · , Fn(d)) ∈ Hq1 × · · · ×Hqd a sequence of centered random vectors such that there exists
σ2

1 , · · · , σ2
d > 0 satisfying :

∀i ∈ J1, dK, Fn(i) law−−−−−→
n→+∞

N (0, σ2
i )

Then there exists a matrix C ∈ S++
n (R) such that

Fn
law−−−−−→

n→+∞
N (0, C).

In other words, the convergence in law component by component to some Gaussian variables is equivalent in
Wiener chaos to the convergence in law of the global vector to some Gaussian vector.

Moreover, the entries of C are given by the limit of E[Fn(i)Fn(j)]. The next subsection is about a consequence
of this strong fact (indeed, in general, converging component by component does not give the convergence of the
vector).

III.4 A way to prove central limit theorems

Theorem III.2 : An access to central limit theorem
Let (Fn)n a sequence of square integrable centered random variables, having its Wiener chaos decomposition :

Fn =
+∞∑

q=1
Iq(fq,n).

We suppose :
a. For all q ⩾ 1, there exists σ2

q > 0 such that

q!∥fn,q∥2
H⊗q −−−−−→

n→+∞
σ2

q .

b. The series
∑

q σ
2
q is convergent. We note σ2 its sum.

c. For all q ⩾ 2 and r ∈ J1, q − 1K :

∥fn,q ⊗r fn,q∥H⊗(2(q−r)) −−−−−→
n→+∞

0.

d. We have
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lim
N→+∞



sup

n⩾1

+∞∑

q=N+1
q!∥fn,q∥2

H⊗q



 = 0.

Then, we have

Fn
law−−−−−→

n→+∞
N (0, σ2).

Let us prove this theorem, which is more useful than it could look like, in the sense that the hypothesis are not
so hard that we could think. Indeed, this theorem is the heart of the theorem we present in the following and last
section.

Proof : Let X ∼ N (0, σ2). Let us prove the convergence by using
the characteristic function. The idea is to consider the truncated sum
in the decomposition of Fn is Wiener chaos, proving that the rest will
be sufficiently close to zero in order to prevent the convergence in law
to N . We consider for N ∈ N∗ :

Fn,N
def.=

N∑

q=1

JqFn =
N∑

q=1

Iq(fn,q),

and XN ∼ N
(

0,
∑N

q=1 σ
2
q

)
. Let ε > 0. We cut in three the

difference of the characteristic function :
∣∣E [eitFn

]
− E
[
eitX

]∣∣
⩽

∣∣E [eitFn
]
− E
[
eitFn,N

]∣∣
+

∣∣E [eitFn,N
]
− E
[
eitXN

]∣∣
+

∣∣E [eitXN
]
− E
[
eitX

]∣∣ .
We denote the sum as (A) + (B) + (C).
A. By factorizing and using

∣∣eiα − 1
∣∣ ⩽ |α|, we have :

(A) ⩽ |t| E
[∣∣Fn − Fn,N

∣∣] .
By Cauchy-Schwarz inequality :

(A) ⩽ |t| E
[∣∣Fn − Fn,N

∣∣2
] 1

2
.

Hence, we have by computing this expectation :

(A) ⩽ |t|

(
+∞∑

q=N+1

q!∥fn,q∥2
H⊗q

) 1
2

.

Hence, by making appear the hypothesis d. :

(A) ⩽ |t|

(
sup
n∈N

{
+∞∑

q=N+1

q!∥fn,q∥2
H⊗q

}) 1
2

.

Since this bound is independent of n, we conclude that

sup
n∈N

(A) ⩽ |t|

(
sup
n∈N

{
+∞∑

q=N+1

q!∥fn,q∥2
H⊗q

}) 1
2

.

This goes to zero when [N → +∞] by hypothesis d.. We set N
big enough (let us say N ⩾ N1) such that (A) ⩽ ε

3 .
B. We apply the fourth moment theorem and then the corollary

about joint convergence in Wiener chaos. Let q ∈ J1, NK. The se-
quence (Iq(fn,q))n⩾1 belongs to the q-th chaos Hq , and satisfies the
two following convergence :

E
[
Iq(fn,q)2

]
−−−−−→
n→+∞

σ2
q ,

by hypothesis a., and by c. :

∥fn,q ⊗r fn,q∥H⊗q −−−−−→
n→+∞

0.

This gives that Var
(
∥DIq(fn,q)∥2

H
)

goes to zero when [n →
+∞]. Hence, by fourth moment theorem, we have :

∀q ∈ J1, NK, Iq(fn,q) law−−−−−→
n→+∞

N (0, σ2
q ).

But, since Iq(fn,q) belongs to a set chaos, by the equivalence
between convergence component by component and convergence of
the vector to a Gaussian law, we have the existence of C ∈ S++

n (R)
such that

(
I1(f1,n), · · · , IN (fN,n)

) law−−−−−→
n→+∞

N (0, C) .

The entries of C is given by the limit of the covariances of each
term. Since two variables in two different chaos have a zero covariance,
we conclude that C is the diagonal matrix whose entries are the σ2

i .
By the continuous mapping theorem, we conclude that

N∑

q=1

Iq(fq,n) law−−−−−→
n→+∞

N

(
0,

N∑

q=1

σ2
q

)
.

Hence,

E
[
eitFn,N − eitXN

]
−−−−−→
n→+∞

0,

meaning that for n large enough, let us say bigger than a rank
n1, (B) ⩽ ε

3 .
C. This is in fact the easiest term to treat since this is the diffe-

rence between two centered Gaussian random variable. We have

(C) = e
−t2

2

∑N

q=1
σ2
q

∣∣∣∣∣1− exp

(
−t2

2

+∞∑

q=N+1

σ2
q

)∣∣∣∣∣ .

By using the fact that e−u ⩽ 1 when u ⩾ 0 and 1 − ex ⩽ x for
x ∈ R, we have :

(C) ⩽ t2

2

+∞∑

q=N+1

σ2
q .

By the hypothesis b., this is the reminder of a convergent series.
Hence, since the right hand side is independent of n, we conclude that
for N big enough, let us say N ⩾ N2, we have (C) ⩽ ε

3 .
CCL. We set N ⩾ max{N1, N2}. Then, we proved that there

exists a rank n1 such that for every n ⩾ n1 :

|φFn (t)− φX(t)| ⩽ ε.

This means by Paul Lévy’s theorem that (Fn)n converges in law
to N (0, σ2). □
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The unfortunate fact here is that we don’t have a speed of convergence.

IV Breuer-Major theorem
We will derive a powerful way to prove central limit theorems for a Gaussian stationary process just by knowing

its covariance function. We need to introduce a notation before going in.

Definition IV.1
Let f ∈ L2

0(γ), where γ is the standard Gaussian measure on R, and L2
0(γ) is the subset of f ∈ L2(γ) such

that
´

R f dγ = 0. We call Hermite rank of f by :

Hermite rank of f = inf
{
d ∈ N∗,

ˆ

R
f(x)Hd(x) dγ(x) = 0

}
.

If f = 0, we set it equal to 0.

In other words, the Hermite rank is the first non zero term in Hermite decomposition of f .

Theorem IV.1 : Breuer-Major theorem

Let (Xn)n∈Z a centered stationary Gaussian sequence, with covariance function ρ, such that E[X2
0 ] = 1. Let

f ∈ L2
0(γ) and we denote by d its Hermite rank. Then, if we suppose that

∑

v∈Z
|ρ(n)|d < +∞,

then

1√
n

n∑

k=1
f(Xk) law−−−−−→

n→+∞
N (0, σ2),

where

σ2 =
+∞∑

q=d

q!a2
q

∑

v∈Z
ρ(v)q,

and aq = ⟨f,Hq⟩L2(γ).

Note : The convergence of the series defining σ is assured by the integrability condition on ρ.
Note : By taking ρ = 1{0}, we deal with the first central limit theorem, with the hypothesis of independence

and distribution.

Lemma IV.1 : Existence of a Hilbert space where we can do Malliavin calculus
Let (Xn)n∈Z a centered stationary Gaussian sequence with covariance function ρ. Then, there exists a real
separable Hilbert space H, a family (εk)k∈Z of elements of H and an isonormal Gaussian process X such that :

1. The Hilbert space H is generated by (εk)k∈Z ;
2. For all k ∈ Z, Xk = X(εk) ;
3. For all k, l ∈ Z : ρ(k − l) = ⟨εk, εl⟩H.

Proof of the lemma : • Let E ⊂ RZ the set of almost null
sequences. We consider for all h, g ∈ E :

⟨h, g⟩H
def.=
∑

k,l∈Z

gkhlρ(k − l).

• We define H as the closure of E for this norm. H is real sepa-
rable Hilbert space. For the separability, we consider EQn ⊂ H the set
of almost null sequences such that for every h ∈ E, we have hk ∈ Q

for all k ∈ Z and for all |k| ⩾ n + 1, hk = 0. Then EQn is in bijection
with Q2n+1 so is countable. So is

⋃
n∈N E

Q
n . But, E is included in

this set. By taking the closure, we conclude that H is the closure of a
countable set, so H is indeed separable.
• We set (εk)k as

εk
def.= 1{k}.

Then, since E is the algebraic span of the (εk)k, we conclude that
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H is the (Hilbert) span of it. So, we get (i). Moreover, we have indeed
by definition that

⟨εk, εl⟩H = ρ(k − l).
• We define for all h =

∑
i∈Z hiεi ∈ E :

X(h) def.=
∑

i∈Z

hiXi.

Note that this is well defined since the sum is finite. Then, we can
already observe that X is an isometry on E :

E[X(h)2] =
∑

i,j∈Z

hihjE[XiXj ].

By definition of the covariance function, since the process is sta-
tionary :

E[X(h)2] =
∑

i,j∈Z

hihjρ(i− j) = ∥h∥2
H.

• We extend X on H by taking the L2-limit of (X(hn))n, where
(hn)n ⊂ E is a sequence converging to h.

▷ This limit exists since the sequence (X(hn))n is a Cauchy se-
quence by isometry property : for all n, p ∈ N :

E
[
|X(hn+p)−X(hn)|2

]
= ∥hn+p − hn∥2

H.

▷ Let us prove that it does not depend on the choice of the
sequence. Let (hn)n and (gn)n two sequences of E such that both
converge to h for ⟨·, ·⟩H and such that there exists H,G ∈ L2(P) such
that (X(hn))n converges to H in L2(P) and (X(gn))n to G. Let us
show that H = G. To do that, we simply use the isometry property :

E
[
|X(hn)−X(gn)|2

]
= ∥hn − gn∥2

H −−−−−→
n→+∞

0.

Hence H = G, so X is well-defined on H.
▷ Let us finally prove that X is an isonormal Gaussian process.

We already have the isometry property, and the linearity. We just need
to check that X(h) ∼ N

(
0, ∥h∥2

H
)

. It is true for h ∈ E, since X(h) is
in this case linear combination of (Xk)k which is a Gaussian process.
But, by using for instance the estimation in Kolmogorov distance bet-
ween two centered Gaussian random variables, we can conclude that
if (σ2

n)n converges to σ2 then N (0, σ2
n) converges in Kolmogorov dis-

tance to N (0, σ2). It means that X(h) ∼ N
(

0, ∥h∥2
H
)

. Hence, X is
indeed an isonormal Gaussian process. □

Let us begin the proof of the Breuer-Major theorem.

Proof : The plan is quite straightforward, but the computations
are very technical. We set the Hilbert space H as in the previous
lemma, and note

Sn(f) def.= 1√
n

n∑

k=1

f(Xk).

1. We decompose Sn(f) in Wiener chaos.
2. We check every point of the theorem about convergence in law

in Wiener chaos explained in previous section.
Let us begin.
1. Since f ∈ L2(γ), we can expend it in L2(γ) in the Hermite

basis :

f =
+∞∑

q=d

aqHq .

Hence, in L2(P) :

Sn(f) = 1√
n

n∑

k=1

+∞∑

q=d

aqHq(Xk).

Hence, we have :

Sn(f) =
+∞∑

q=d

aq√
n

n∑

k=1

Hq(Xk).

Since aq√
n

∑n

k=1 Hq(Xk) ∈ Hq , we have our decomposition in
Wiener chaos. We can write it with multiple integrals : Sn(f) =∑+∞

q=d Iq(fn,q), with :

fn,q
def.= aq√

n

n∑

k=1

ε⊗q
k
,

where (εk)k is given by the previous lemma. In particular, fn,q = 0
for q ⩽ d− 1.

2. We check one by one every hypothesis of the theorem.
a. Let us show that

∀q ⩾ 1, q!∥fn,q∥2
H⊗q −−−−−→

n→+∞
0.

We simply compute this norm by expending it, and expanding in
product the inner product of tensorized functions.

∥fn,q∥2
H⊗q =

a2
q

n

n∑

k,l=1

⟨εk, εl⟩qH.

By definition of (εk)k :

∥fn,q∥2
H⊗q =

a2
q

n

n∑

k,l=1

ρ(k − l)q .

Then, by changing variables and switching (finite) sums, we have :

∥fn,q∥2
H⊗q =

a2
q

n

∑

l∈Z

ρ(l)q♯J1, nK ∩ Jl + 1, l + nK.

This cardinal can be computed if l < 0 or l > 0. We have :

∥fn,q∥2
H⊗q =

a2
q

n

n−1∑

l=0

ρ(l)q♯Jl + 1, nK.

+
a2
q

n

−1∑

l=−(n−1)

ρ(l)q♯J1, n+ lK.

So :

∥fn,q∥2
H⊗q =

a2
q

n

n−1∑

l=0

ρ(l)q(n− l).

+
a2
q

n

−1∑

l=−(n−1)

ρ(l)q(n+ l).

In other words :

∥fn,q∥2
H⊗q =

a2
q

n

n−1∑

l=−(n−1)

ρ(l)q(n− |l|).

We write as :

∥fn,q∥2
H⊗q = a2

q

∑

l∈Z

ρ(l)q
(

1− |l|
n

)
1{|l|<n}.

But, we have the domination :
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∣∣∣ρ(l)q
(

1− |l|
n

)
1{|l|<n}

∣∣∣ ⩽ |ρ(l)|q ,

which is the general term of a convergent series. Hence, by domi-
nated convergence, we conclude that

q!∥fn,q∥2
H⊗q −−−−−→

n→+∞
q!a2

q

∑

l∈Z

ρ(l)q def.= σ2
q .

b. Let us prove that
∑+∞

q=d σ
2
q < +∞. To do that, we observe

first that since ρ(0) = 1, we have by Cauchy-Schwarz inequality :

∀v ∈ Z, |ρ(v)| ⩽
(
E[X2

0 ]E[X2
v ]
) 1

2 = ρ(0) = 1.
So, we have

+∞∑

q=d

σ2
q ⩽

+∞∑

q=d

q!a2
q

∑

l∈Z

|ρ(l)|d < +∞.

So, σ2 def.=
∑+∞

q=d σ
2
q is finite.

c. Let us prove that for all q ⩾ d and r ∈ J1, q − 1K :

∥fn,q ⊗r fn,q∥H⊗(2(q−r)) −−−−−→
n→+∞

0.

• First, let us give an expression for this contraction. We have :

fn,q ⊗r fn,q =
(
aq√
n

)2
(

n∑

k=1

ε⊗q
k

)
⊗r

(
n∑

l=1

ε⊗q
l

)
.

We expend, knowing that :

ε⊗q
k
⊗r ε⊗q

l
= ⟨εk, εl⟩rL2(T )ε

⊗(q−r)
k

⊗ ε×(q−r)
l

.

So, we get :

fn,q ⊗r fn,q =
(
aq√
n

)2 n∑

k,l=1

ρ(k − l)rε⊗(q−r)
k

⊗ ε⊗(q−r)
l

.

We can compute the norm of it. We call

(A) = ∥fn,q ⊗r fn,q∥2
H⊗(2(q−r)) .

Then, by expanding, we get :

(A) =
a4
q

n2

n∑

k,i=1

n∑

l,j=1

ρ(k − j)rρ(i− l)r

·
〈
ε

⊗(q−r)
k

⊗ ε⊗(q−r)
j , ε

⊗(q−r)
i ⊗ ε⊗(q−r)

l

〉
H⊗(2(q−r))

.

By the definition of the inner product on a tensor product, we
have

(A) =
a4
q

n2

n∑

k,i=1

n∑

l,j=1

ρ(k − j)rρ(i− l)r

· ⟨εk, εi⟩q−r
H ⟨εj , εl⟩q−r

H .

And by definition of (εk)k, we get :

(A) =
a4
q

n2

n∑

k,i=1

n∑

l,j=1

ρ(k − j)rρ(i− l)r

· ρ(k − i)q−rρ(l − j)q−r.

But,

|ρ(k − i)q−rρ(k − j)r| ⩽ |ρ(k − j)|q + |ρ(k − i)|q .

Hence, we have :

(A) ⩽
a4
q

n2

n∑

k,i=1

n∑

l,j=1

|ρ(k − j)|q |ρ(i− l)|r|ρ(l − j)|q−r

+
a4
q

n2

n∑

k,i=1

n∑

l,j=1

|ρ(k − i)|q |ρ(i− l)|r|ρ(l − j)|q−r.

By isolating the sum in k, we get :

(A) ⩽
2a4
q

n2

∑

k∈Z

|ρ(k)|q ·
n∑

i,j,l=1

|ρ(i− l)|r|ρ(l − j)|q−r

By writing :

n∑

i,j,l=1

|ρ(i− l)|r|ρ(l − j)|q−r

=
n∑

l=1

{(
n∑

i=1

|ρ(i− l)|r
)(

n∑

j=1

|ρ(j − l)|q−r

)}
,

we can have a nice estimation, using the fact that |i− l| < n and
|j − l| < n :

(A) ⩽
2a4
q

n

∑

k∈Z

|ρ(k)|q
∑

|i|<n

|ρ(i)|r
∑

|j|<n

|ρ(j)|q−r.

We finally write it as :

(A) ⩽ 2a4
q

(∑

k∈Z

|ρ(k)|q
)

·


 1
n

1+ r
q

∑

|i|<n

|ρ(i)|r




 1

n
1+ q−r

q

∑

|j|<n

|ρ(j)|q−r


 .

• So, to conclude in our convergence in zero, it is enough to check
that for all r ∈ J1, q − 1K :

1
n

1− r
q

∑

|j|<n

|ρ(j)|r −−−−−→
n→+∞

0.

To do this, we introduce a parameter δ ∈]0, 1[, and cut the sum
as :

∑

|j|<n

=
∑

|j|⩽⌊δn⌋

+
∑

⌊δn⌋<|j|<n

.

Let ε > 0.
▷ For the first sum, we apply Jensen’s inequality for x 7−→ x

q
r ,

knowing that there is 2⌊δn⌋+ 1 :

1
n

1− r
q

∑

|j|⩽⌊δn⌋

|ρ(j)|r ⩽
(2⌊δn⌋+ 1

n

)1− r
q


 ∑

|j|⩽⌊δn⌋

|ρ(j)|q



r
q

.

We write it as, by Jensen inequality :

1
n

1− r
q

∑

|j|⩽⌊δn⌋

|ρ(j)|r

⩽ 1
2
r
q

(
(2δ)1− r

q + 1
n

1− r
q

)[∑

j∈Z

|ρ(j)|q
] r
q

.

So, there exists δ0 ∈ (0, 1) and N1 ∈ N such that for every δ < δ0
and n ⩾ N1 :

1
n

1− r
q

∑

|j|⩽⌊δn⌋

|ρ(j)|r ⩽ ε

2
.
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▷ For the second, we use Jensen inequality again, but with
n− ⌊δn⌋+ 1 :

1
n

1− r
q

∑

⌊δn⌋<|j|<n

|ρ(j)|r

⩽
(2(n− ⌊δn⌋+ 1)

n

)1− r
q


 ∑

⌊δn⌋<|j|<n

|ρ(j)|q



r
q

.

So :

1
n

1− r
q

∑

⌊δn⌋<|j|<n

|ρ(j)|r

⩽ 21− r
q

(
1− δ + 2

n

)1− r
q


 ∑

⌊δn⌋<|j|<n

|ρ(j)|q



r
q

.

And since δ ∈]0, 1[ :

1
n

1− r
q

∑

⌊δn⌋<|j|<n

|ρ(j)|r ⩽ 22− r
q


 ∑

⌊δn⌋<|j|<n

|ρ(j)|q



r
q

.

Since
∑

j∈Z |ρ(j)|q <∞, there exists a rank N2 ∈ N such that

22− r
q


 ∑

⌊δn⌋<|j|

|ρ(j)|q



r
q

⩽ ε

2
.

▷ In conclusion, for all δ ∈]0, δ0[ and n ⩾ max{N1, N2}, we have

1
n

1− r
q

∑

|j|<n

|ρ(j)|r ⩽ ε.

Since this property is in fact independent of δ, we conclude in the
expected convergence to zero. So is ∥fn,q ⊗r fn,q∥2

H⊗(2(q−r)) .
d. Let us finally show that

lim
N→+∞

sup
n⩾1

+∞∑

q=N+1

q!∥fn,q∥2
H⊗q = 0.

To do that, we use the first expended expression of ∥fn,q∥2 deri-
ved in a.. Let N ∈ N. We call

(B) def.=
+∞∑

q=N+1

q!∥fn,q∥2
H⊗q .

Then the expansion gives

(B) =
+∞∑

q=N+1

a2
qq!
n

n∑

k,l=1

ρ(k − l)q .

By isolating one of the sum, we can conclude to :

(B) ⩽
+∞∑

q=N+1

a2
qq!
∑

k∈Z

|ρ(k)|d.

This estimation is independent of n, so the supremum is also
bounded by this term. The sum in q is going to zero since the sum of
it is ∥f∥2

L2(γ). Hence, we have

lim
N→+∞

sup
n⩾1

+∞∑

q=N+1

q!∥fn,q∥2
H⊗q = 0.

CCL. We proved the four points of the theorem to conclude that
we have

Sn(f) law−−−−−→
n→+∞

N (0, σ2),

where σ2 =
∑+∞

q=d q!|aq |
2∑

l∈Z |ρ(l)|q . □

To improve this theorem, we could wonder how to get a speed of convergence, for the Wasserstein distance for
instance, like we get in the central limit theorem by Berry-Esséen. Remember that to have it for the CLT, we had
to suppose that the variables have a moment with order 3. Here, it is possible that we need to have less smooth
hypothesis that the one we have here. The Stein’s method gives here a positive answer to this : for quite stronger
hypothesis, it is indeed possible to have a rate of convergence, and better, we can even find the optimal one.
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