Nombres de Bell

Arnaud GIRAND

7 janvier 2012

Références:

- [FGN07], p. 14–16

Leçons:

- 145 Méthodes combinatoires, problèmes de dénombrement.
- 241 Suites et séries de fonctions. Exemples et contre-exemples.
- 243 Convergence des séries entières, propriétés de la somme. Exemples et applications.
- 247 Exemples de problèmes d'interversion de limites.

Prérequis :

- théorème de Fubini pour les séries doubles.

Proposition 1

Pour $n \ge 0$ on note B_n le nombre 1 de partitions distinctes de l'ensemble [n].

Alors:

(i) la série entière $\sum \frac{B_n}{n!} z^n$ a un rayon de convergence R > 0 et sa somme f vérifie :

$$\forall z \in (-R, R), \quad f(z) = e^{e^z - 1}$$

(ii) pour tout $k \in \mathbb{N}$ on a:

$$B_k = \frac{1}{e} \sum_{n=0}^{\infty} \frac{n^k}{n!}$$

DÉMONSTRATION:

(i) Soit $n \geq 0$. Pour $0 \leq k \leq n$, on note E_k l'ensemble des partitions de [n+1] telle que le "morceau²" contenant n+1 soit de cardinal k+1. Pour construire une telle partition, il suffit de choisir la classe de n+1 (choix de k éléments dans [n]) puis de partitionner les n+1-(k+1)=n-k entiers restants, d'où card $(E_k)=C_n^kB_{n-k}$.

De plus, il est clair que $\{E_0, \ldots, E_n\}$ est une partition de l'ensemble des partitions de [n+1] et donc :

$$B_{n+1} = \sum_{k=0}^{n} \operatorname{card}(E_k) = \sum_{k=0}^{n} C_n^k B_{n-k} = \sum_{k=0}^{n} C_n^k B_k \operatorname{car} C_n^{n-k} = C_n^k$$
 (1)

Démontrons par récurrence sur $n \geq 0$ que $\forall n \in \mathbb{N}, B_n \leq n!$.

- -n=0. Trivial.
- Supposons la propriété vraie au rang $n \ge 0$. Alors :

$$B_{n+1} = \sum_{k=0}^{n} C_n^k B_k$$

$$\leq \sum_{k=0}^{n} C_n^k k!$$

$$= n! \sum_{k=0}^{n} \underbrace{\frac{1}{(n-k)!}}_{\leq 1}$$

$$\leq (n+1)!$$

D'où l'hérédité.

^{1.} Notons que la seule partition de \emptyset étant $\{\emptyset\}$, on a $B_0 = 1$.

^{2.} Il faut bien que je m'amuse de temps en temps . . .

De fait, pour tout $n \in \mathbb{N}$ et $z \in \mathbb{C}$, $0 \le \frac{B_n}{n!} |z|^n \le |z|^k$ donc R est supérieur ou égal au rayon de convergence de la série géométrique, à savoir 1. En particulier, R est strictement positif. Soit à présent $z \in (-R, R)$. Alors, par un changement d'indice :

$$f(z) = 1 + \sum_{n=0}^{\infty} \frac{B_{n+1}}{(n+1)!} z^{n+1}$$

Par théorème de dérivation terme à terme pour les séries entières on obtient :

$$f'(z) = \sum_{n=0}^{\infty} \frac{B_{n+1}}{n!} z^n$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^n C_n^k B_k \right) z^n \text{ par (1)}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \frac{B_k}{k!} \frac{1}{(n-k)!} \right) z^n$$

On reconnaît dans cette dernière expression le produit de Cauchy des séries $\sum \frac{z^n}{n!}$ et $\sum \frac{B_n}{n!} z^n$, toutes deux de rayon de convergence supérieur ou égal à R. De fait :

$$\forall z \in (-R, R), \quad f'(z) = f(z) \sum_{n=0}^{\infty} \frac{z^n}{n!} = f(z)e^z$$
 (2)

Résolvant (2) on trouve que :

$$\exists C \in \mathbb{R}, \ \forall z \in (-R, R), \quad f(z) = Ce^{e^z}$$

Or f(0) = 1 donc $C = e^{-1}$ d'où :

$$f(z) = \frac{1}{e}e^{e^z} = e^{e^z - 1}$$

(ii) Soit $z \in \mathbb{C}$. Alors

$$e^{e^z} = \sum_{n=0}^{\infty} \frac{e^{nz}}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{\infty} \frac{(nz)^k}{k!}$$

On considère donc la série double $^3\sum_{(n,k)}u_{n,k}$ où $\forall n,k\in\mathbb{N},\,u_{n,k}:=\frac{(nz)^k}{n!k!}$. Alors, pour tout $n\geq 0$, la série $\sum_{(k)}|u_{n,k}|$ converge et :

$$\sum_{k=0}^{\infty} |u_{n,k}| = \sum_{k=0}^{\infty} \frac{n^k |z|^k}{n!k!} = \frac{e^{n|z|}}{n!}$$

De fait, $\sum_{(n)}^{\infty} \sum_{k=0}^{\infty} |u_{n,k}|$ converge. Par théorème de Fubini pour les séries doubles, $\sum_{(n,k)} u_{n,k}$ converge et :

$$\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}u_{n,k}=\sum_{k=0}^{\infty}\sum_{n=0}^{\infty}u_{n,k}$$

I.e :

$$f(z) = \frac{1}{e} e^{e^z}$$

$$= \frac{1}{e} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(nz)^k}{n!k!}$$

$$= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{(nz)^k}{n!k!}$$

$$= \sum_{k=0}^{\infty} \frac{1}{e} \left(\sum_{n=0}^{\infty} \frac{n^k}{n!}\right) \frac{z^k}{k!}$$

^{3.} Vous préféreriez que je vous parle de mesure de comptage sur \mathbb{N}^2 ? ... Là. Faites ce que l'on vous dit et il n'y aura pas de blessé.

Et donc, par unicité du développement en série entière de f sur (-R,R) :

$$\forall k \in \mathbb{N}, \qquad B_k = \frac{1}{e} \sum_{n=0}^{\infty} \frac{n^k}{n!}$$

Détails supplémentaires :

- L'expression de B_k trouvée en (ii) et les calculs menés lors de la démonstration de ce dernier point montrent que R est en fait égal à $+\infty$.

Références

[FGN07] Serge Francinou, Hervé Gianella, and Serge Nicolas. Oraux X - ENS, Algèbre 1 (2e édition). Cassini, 2007.