157 -- Endomorphismes trigonalisables. Endomorphismes nilpotents. : Différence entre versions

De AgregmathKL
Aller à : navigation, rechercher
 
(11 révisions intermédiaires par 9 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== Plans ==
+
= Plans =
  
[[Fichier:Pdf.png|alt=Pdf|link=|24px]] [[Média:157_2012-2013.pdf | Plan scanné de l'année 2012-2013]]
+
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2012-2013.pdf|24px]] [[Média:157_2012-2013.pdf | Plan scanné de l'année 2012-2013]]
  
Plan détaillé de l'année 2013-2014 (mémoire) : [[Fichier:Pdf.png|alt=Pdf|link=Média:memoire157-2013.pdf|24px]] [[Fichier:Tex.png|alt=Tex|link=Média:memoire157-2013.tex|24px]]
+
[[Fichier:Pdf.png|alt=Pdf|link=Media:memoire157-2013.pdf|24px]] [[Fichier:Tex.png|alt=Tex|link=Media:memoire157-2013.tex}}|24px]] [[Média:memoire157-2013.pdf | Plan détaillé de l'année 2013-2014 (mémoire)]]
  
[[Fichier:Pdf.png|alt=Pdf|link=|24px]] [[Média:157_2013-2014.pdf | Plan scanné de l'année 2013-2014]]
+
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2013-2014.pdf|24px]] [[Média:157_2013-2014.pdf | Plan scanné de l'année 2013-2014]]
  
== Développements ==
+
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2014-2015.pdf|24px]] [[Média:157_2014-2015.pdf | Plan scanné de l'année 2014-2015]]
<DynamicPageList>
+
 
category            = Développement de la leçon 157
+
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2015-2016.pdf|24px]] [[Média:157_2015-2016.pdf | Plan scanné de l'année 2015-2016]]
</DynamicPageList>
+
 
 +
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2016-2017.pdf|24px]] [[Média:157_2016-2017.pdf | Plan scanné de l'année 2016-2017]]
 +
 +
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2017-2018.pdf|24px]] [[Média:157_2017-2018.pdf | Plan scanné de l'année 2017-2018]]
 +
 
 +
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2018-2019.pdf|24px]] [[Média:157_2018-2019.pdf | Plan scanné de l'année 2018-2019]]
 +
 
 +
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2019-2020.pdf|24px]] [[Média:157_2019-2020.pdf | Plan scanné de l'année 2019-2020]]
 +
 
 +
[[Fichier:Pdf.png|alt=Pdf|link=Média:157_2020-2021.pdf|24px]] [[Média:157_2020-2021.pdf | Plan scanné de l'année 2020-2021]]
  
= Autre plan =
+
== Autre plan ==
  
 
Structure :
 
Structure :
  
== Premières définitions, premières propriétés ==
+
=== Premières définitions, premières propriétés ===
  
 
1)Endomorphismes nilpotents [Gri]
 
1)Endomorphismes nilpotents [Gri]
Ligne 27 : Ligne 36 :
 
Définition et caractérisation de la trigonalisation.
 
Définition et caractérisation de la trigonalisation.
  
 
+
=== Éléments propres, sous-espaces stables et commutation ===
== Éléments propres, sous-espaces stables et commutation ==
+
  
 
1)Valeurs propres, vecteurs propres [Gou]
 
1)Valeurs propres, vecteurs propres [Gou]
Ligne 44 : Ligne 52 :
 
Un endomorphisme est diagonalisable si et seulement si son exponentielle l'est. Et antécédents de l'identité par exponentielle.  
 
Un endomorphisme est diagonalisable si et seulement si son exponentielle l'est. Et antécédents de l'identité par exponentielle.  
  
 
+
=== Réductions de type trigonalisation ===
== Réductions de type trigonalisation ==
+
  
 
1)Trigonalisation par blocs [Gri]
 
1)Trigonalisation par blocs [Gri]
Ligne 66 : Ligne 73 :
  
 
----
 
----
Références :
+
=== Références ===
 
[Gri] Grifone, Algèbre linéaire
 
[Gri] Grifone, Algèbre linéaire
 
[Tau] Tauvel, Cours d'algèbre
 
[Tau] Tauvel, Cours d'algèbre
Ligne 74 : Ligne 81 :
  
  
== Rapport du jury ==
+
= Développements =
 +
<DynamicPageList>
 +
category            = Développement de la leçon 157
 +
</DynamicPageList>
  
Il est possible de mener une leçon de bon niveau, même sans la décomposition de Jordan à l’aide des noyaux itérés.
 
  
  
 
[[Category:leçon d'algèbre]]
 
[[Category:leçon d'algèbre]]
[[Category:Leçon de maths pour l'option D]]
 

Version actuelle en date du 21 avril 2022 à 21:56

Plans

Pdf Plan scanné de l'année 2012-2013

Pdf Tex Plan détaillé de l'année 2013-2014 (mémoire)

Pdf Plan scanné de l'année 2013-2014

Pdf Plan scanné de l'année 2014-2015

Pdf Plan scanné de l'année 2015-2016

Pdf Plan scanné de l'année 2016-2017

Pdf Plan scanné de l'année 2017-2018

Pdf Plan scanné de l'année 2018-2019

Pdf Plan scanné de l'année 2019-2020

Pdf Plan scanné de l'année 2020-2021

Autre plan

Structure :

Premières définitions, premières propriétés

1)Endomorphismes nilpotents [Gri]

Définition et représentation en matrice triangulaire à diagonale nulle. Caractérisation par les traces des puissances successives. Exemples

2)Polynômes caractéristique et minimal [Gou]

Définitions, exemple des endomorphismes nilpotents. Définition et caractérisation de la trigonalisation.

Éléments propres, sous-espaces stables et commutation

1)Valeurs propres, vecteurs propres [Gou]

Définitions des deux notions, exemples simples. Cas des matrices triangulaires et des matrices nilpotentes, Cayley-Hamilton.

2)Sous-espaces stables, propres, caractéristiques [Tau]

Définitions, exemples pour illustrer les différences.

3)Commutation et réductions [Tau], [Gou] et [O-A]

Lemme des noyaux. Co-trigonalisation d'une famille d'endomorphismes commutant deux à deux. Décomposition de Dunford, application au calcul d'exponentielles de matrices. Un endomorphisme est diagonalisable si et seulement si son exponentielle l'est. Et antécédents de l'identité par exponentielle.

Réductions de type trigonalisation

1)Trigonalisation par blocs [Gri]

(a)Trigonalisation suivant les sous-espaces caractéristiques (blocs triangulaires) et application au calcul de puissances de matrices. (b)Représentation canonique des transformations orthogonales ([Gri] p.303).

2)Réduction de Jordan [Gri] ou [Tau] ou [Gou]

Cas des endomorphismes nilpotents et cas général

3)Décomposition de Bruhat [XE1]



Bien sûr, il ne faut pas oublier les motivations : la recherche d'une matrice semblable ayant un maximum de zéros ou au moins une forme particulièrement adaptée à tel ou tel calcul (déterminant, puissance, exponentielle...). Ceci peut être précisé à l'oral, justement.

Les développements proposés sont la décomposition de Dunford (avec le fait que les endomorphismes n et d sont des polynômes en l'endomorphisme initial, par le lemme Chinois : cf. [O-A]), et celle de Bruhat, qui amène à parler éventuellement lors des questions des actions de groupes sur les drapeaux.


Références

[Gri] Grifone, Algèbre linéaire [Tau] Tauvel, Cours d'algèbre [XE1] Oraux X-ENS, Algèbre 1 [Gou] Gourdon, Algèbre [O-A] Objectif agrégation


Développements